160 lines
6.9 KiB
Python
160 lines
6.9 KiB
Python
# Code for handling the kinematics of corexy robots
|
|
#
|
|
# Copyright (C) 2017 Kevin O'Connor <kevin@koconnor.net>
|
|
#
|
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
|
import logging, math
|
|
import stepper, homing
|
|
|
|
StepList = (0, 1, 2)
|
|
|
|
class CoreXYKinematics:
|
|
def __init__(self, toolhead, printer, config):
|
|
self.steppers = [
|
|
stepper.PrinterHomingStepper(
|
|
printer, config.getsection('stepper_x')),
|
|
stepper.PrinterHomingStepper(
|
|
printer, config.getsection('stepper_y')),
|
|
stepper.LookupMultiHomingStepper(
|
|
printer, config.getsection('stepper_z'))]
|
|
self.steppers[0].mcu_endstop.add_stepper(self.steppers[1].mcu_stepper)
|
|
self.steppers[1].mcu_endstop.add_stepper(self.steppers[0].mcu_stepper)
|
|
max_velocity, max_accel = toolhead.get_max_velocity()
|
|
self.max_z_velocity = config.getfloat(
|
|
'max_z_velocity', max_velocity, above=0., maxval=max_velocity)
|
|
self.max_z_accel = config.getfloat(
|
|
'max_z_accel', max_accel, above=0., maxval=max_accel)
|
|
self.need_motor_enable = True
|
|
self.limits = [(1.0, -1.0)] * 3
|
|
# Setup stepper max halt velocity
|
|
max_halt_velocity = toolhead.get_max_axis_halt()
|
|
max_xy_halt_velocity = max_halt_velocity * math.sqrt(2.)
|
|
self.steppers[0].set_max_jerk(max_xy_halt_velocity, max_accel)
|
|
self.steppers[1].set_max_jerk(max_xy_halt_velocity, max_accel)
|
|
self.steppers[2].set_max_jerk(
|
|
min(max_halt_velocity, self.max_z_velocity), self.max_z_accel)
|
|
def get_steppers(self, flags=""):
|
|
if flags == "Z":
|
|
return [self.steppers[2]]
|
|
return list(self.steppers)
|
|
def get_position(self):
|
|
pos = [s.mcu_stepper.get_commanded_position() for s in self.steppers]
|
|
return [0.5 * (pos[0] + pos[1]), 0.5 * (pos[0] - pos[1]), pos[2]]
|
|
def set_position(self, newpos):
|
|
pos = (newpos[0] + newpos[1], newpos[0] - newpos[1], newpos[2])
|
|
for i in StepList:
|
|
self.steppers[i].set_position(pos[i])
|
|
def home(self, homing_state):
|
|
# Each axis is homed independently and in order
|
|
for axis in homing_state.get_axes():
|
|
s = self.steppers[axis]
|
|
self.limits[axis] = (s.position_min, s.position_max)
|
|
# Determine moves
|
|
if s.homing_positive_dir:
|
|
pos = s.position_endstop - 1.5*(
|
|
s.position_endstop - s.position_min)
|
|
rpos = s.position_endstop - s.homing_retract_dist
|
|
r2pos = rpos - s.homing_retract_dist
|
|
else:
|
|
pos = s.position_endstop + 1.5*(
|
|
s.position_max - s.position_endstop)
|
|
rpos = s.position_endstop + s.homing_retract_dist
|
|
r2pos = rpos + s.homing_retract_dist
|
|
# Initial homing
|
|
homing_speed = s.homing_speed
|
|
if axis == 2:
|
|
homing_speed = min(homing_speed, self.max_z_velocity)
|
|
homepos = [None, None, None, None]
|
|
homepos[axis] = s.position_endstop
|
|
coord = [None, None, None, None]
|
|
coord[axis] = pos
|
|
homing_state.home(coord, homepos, s.get_endstops(), homing_speed)
|
|
# Retract
|
|
coord[axis] = rpos
|
|
homing_state.retract(coord, homing_speed)
|
|
# Home again
|
|
coord[axis] = r2pos
|
|
homing_state.home(coord, homepos, s.get_endstops(),
|
|
homing_speed/2.0, second_home=True)
|
|
if axis == 2:
|
|
# Support endstop phase detection on Z axis
|
|
coord[axis] = s.position_endstop + s.get_homed_offset()
|
|
homing_state.set_homed_position(coord)
|
|
def motor_off(self, print_time):
|
|
self.limits = [(1.0, -1.0)] * 3
|
|
for stepper in self.steppers:
|
|
stepper.motor_enable(print_time, 0)
|
|
self.need_motor_enable = True
|
|
def _check_motor_enable(self, print_time, move):
|
|
if move.axes_d[0] or move.axes_d[1]:
|
|
self.steppers[0].motor_enable(print_time, 1)
|
|
self.steppers[1].motor_enable(print_time, 1)
|
|
if move.axes_d[2]:
|
|
self.steppers[2].motor_enable(print_time, 1)
|
|
need_motor_enable = False
|
|
for i in StepList:
|
|
need_motor_enable |= self.steppers[i].need_motor_enable
|
|
self.need_motor_enable = need_motor_enable
|
|
def _check_endstops(self, move):
|
|
end_pos = move.end_pos
|
|
for i in StepList:
|
|
if (move.axes_d[i]
|
|
and (end_pos[i] < self.limits[i][0]
|
|
or end_pos[i] > self.limits[i][1])):
|
|
if self.limits[i][0] > self.limits[i][1]:
|
|
raise homing.EndstopMoveError(
|
|
end_pos, "Must home axis first")
|
|
raise homing.EndstopMoveError(end_pos)
|
|
def check_move(self, move):
|
|
limits = self.limits
|
|
xpos, ypos = move.end_pos[:2]
|
|
if (xpos < limits[0][0] or xpos > limits[0][1]
|
|
or ypos < limits[1][0] or ypos > limits[1][1]):
|
|
self._check_endstops(move)
|
|
if not move.axes_d[2]:
|
|
# Normal XY move - use defaults
|
|
return
|
|
# Move with Z - update velocity and accel for slower Z axis
|
|
self._check_endstops(move)
|
|
z_ratio = move.move_d / abs(move.axes_d[2])
|
|
move.limit_speed(
|
|
self.max_z_velocity * z_ratio, self.max_z_accel * z_ratio)
|
|
def move(self, print_time, move):
|
|
if self.need_motor_enable:
|
|
self._check_motor_enable(print_time, move)
|
|
sxp = move.start_pos[0]
|
|
syp = move.start_pos[1]
|
|
move_start_pos = (sxp + syp, sxp - syp, move.start_pos[2])
|
|
exp = move.end_pos[0]
|
|
eyp = move.end_pos[1]
|
|
axes_d = ((exp + eyp) - move_start_pos[0],
|
|
(exp - eyp) - move_start_pos[1], move.axes_d[2])
|
|
for i in StepList:
|
|
axis_d = axes_d[i]
|
|
if not axis_d:
|
|
continue
|
|
step_const = self.steppers[i].step_const
|
|
move_time = print_time
|
|
start_pos = move_start_pos[i]
|
|
axis_r = abs(axis_d) / move.move_d
|
|
accel = move.accel * axis_r
|
|
cruise_v = move.cruise_v * axis_r
|
|
|
|
# Acceleration steps
|
|
if move.accel_r:
|
|
accel_d = move.accel_r * axis_d
|
|
step_const(move_time, start_pos, accel_d,
|
|
move.start_v * axis_r, accel)
|
|
start_pos += accel_d
|
|
move_time += move.accel_t
|
|
# Cruising steps
|
|
if move.cruise_r:
|
|
cruise_d = move.cruise_r * axis_d
|
|
step_const(move_time, start_pos, cruise_d, cruise_v, 0.)
|
|
start_pos += cruise_d
|
|
move_time += move.cruise_t
|
|
# Deceleration steps
|
|
if move.decel_r:
|
|
decel_d = move.decel_r * axis_d
|
|
step_const(move_time, start_pos, decel_d, cruise_v, -accel)
|