klipper/lib/hal-stm32f1/source/stm32f1xx_hal_adc_ex.c

1342 lines
53 KiB
C

/**
******************************************************************************
* @file stm32f1xx_hal_adc_ex.c
* @author MCD Application Team
* @version V1.1.1
* @date 12-May-2017
* @brief This file provides firmware functions to manage the following
* functionalities of the Analog to Digital Convertor (ADC)
* peripheral:
* + Operation functions
* ++ Start, stop, get result of conversions of injected
* group, using 2 possible modes: polling, interruption.
* ++ Multimode feature (available on devices with 2 ADCs or more)
* ++ Calibration (ADC automatic self-calibration)
* + Control functions
* ++ Channels configuration on injected group
* Other functions (generic functions) are available in file
* "stm32f1xx_hal_adc.c".
*
@verbatim
[..]
(@) Sections "ADC peripheral features" and "How to use this driver" are
available in file of generic functions "stm32f1xx_hal_adc.c".
[..]
@endverbatim
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
/** @defgroup ADCEx ADCEx
* @brief ADC Extension HAL module driver
* @{
*/
#ifdef HAL_ADC_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup ADCEx_Private_Constants ADCEx Private Constants
* @{
*/
/* Delay for ADC calibration: */
/* Hardware prerequisite before starting a calibration: the ADC must have */
/* been in power-on state for at least two ADC clock cycles. */
/* Unit: ADC clock cycles */
#define ADC_PRECALIBRATION_DELAY_ADCCLOCKCYCLES 2U
/* Timeout value for ADC calibration */
/* Value defined to be higher than worst cases: low clocks freq, */
/* maximum prescaler. */
/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
/* prescaler 4, sampling time 12.5 ADC clock cycles, resolution 12 bits. */
/* Unit: ms */
#define ADC_CALIBRATION_TIMEOUT 10U
/* Delay for temperature sensor stabilization time. */
/* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */
/* Unit: us */
#define ADC_TEMPSENSOR_DELAY_US 10U
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup ADCEx_Exported_Functions ADCEx Exported Functions
* @{
*/
/** @defgroup ADCEx_Exported_Functions_Group1 Extended Extended IO operation functions
* @brief Extended Extended Input and Output operation functions
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Start conversion of injected group.
(+) Stop conversion of injected group.
(+) Poll for conversion complete on injected group.
(+) Get result of injected channel conversion.
(+) Start conversion of injected group and enable interruptions.
(+) Stop conversion of injected group and disable interruptions.
(+) Start multimode and enable DMA transfer.
(+) Stop multimode and disable ADC DMA transfer.
(+) Get result of multimode conversion.
(+) Perform the ADC self-calibration for single or differential ending.
(+) Get calibration factors for single or differential ending.
(+) Set calibration factors for single or differential ending.
@endverbatim
* @{
*/
/**
* @brief Perform an ADC automatic self-calibration
* Calibration prerequisite: ADC must be disabled (execute this
* function before HAL_ADC_Start() or after HAL_ADC_Stop() ).
* During calibration process, ADC is enabled. ADC is let enabled at
* the completion of this function.
* @param hadc: ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
uint32_t tickstart;
__IO uint32_t wait_loop_index = 0U;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* 1. Calibration prerequisite: */
/* - ADC must be disabled for at least two ADC clock cycles in disable */
/* mode before ADC enable */
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_BUSY_INTERNAL);
/* Hardware prerequisite: delay before starting the calibration. */
/* - Computation of CPU clock cycles corresponding to ADC clock cycles. */
/* - Wait for the expected ADC clock cycles delay */
wait_loop_index = ((SystemCoreClock
/ HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC))
* ADC_PRECALIBRATION_DELAY_ADCCLOCKCYCLES );
while(wait_loop_index != 0U)
{
wait_loop_index--;
}
/* 2. Enable the ADC peripheral */
ADC_Enable(hadc);
/* 3. Resets ADC calibration registers */
SET_BIT(hadc->Instance->CR2, ADC_CR2_RSTCAL);
tickstart = HAL_GetTick();
/* Wait for calibration reset completion */
while(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_RSTCAL))
{
if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
{
/* Update ADC state machine to error */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_BUSY_INTERNAL,
HAL_ADC_STATE_ERROR_INTERNAL);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
/* 4. Start ADC calibration */
SET_BIT(hadc->Instance->CR2, ADC_CR2_CAL);
tickstart = HAL_GetTick();
/* Wait for calibration completion */
while(HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_CAL))
{
if((HAL_GetTick() - tickstart) > ADC_CALIBRATION_TIMEOUT)
{
/* Update ADC state machine to error */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_BUSY_INTERNAL,
HAL_ADC_STATE_ERROR_INTERNAL);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
}
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_BUSY_INTERNAL,
HAL_ADC_STATE_READY);
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Enables ADC, starts conversion of injected group.
* Interruptions enabled in this function: None.
* @param hadc: ADC handle
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStart(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
/* - Clear state bitfield related to injected group conversion results */
/* - Set state bitfield related to injected operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
HAL_ADC_STATE_INJ_BUSY);
/* Case of independent mode or multimode (for devices with several ADCs): */
/* Set multimode state. */
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
else
{
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Check if a regular conversion is ongoing */
/* Note: On this device, there is no ADC error code fields related to */
/* conversions on group injected only. In case of conversion on */
/* going on group regular, no error code is reset. */
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
{
/* Reset ADC all error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Clear injected group conversion flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
/* Enable conversion of injected group. */
/* If software start has been selected, conversion starts immediately. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* If automatic injected conversion is enabled, conversion will start */
/* after next regular group conversion. */
/* Case of multimode enabled (for devices with several ADCs): if ADC is */
/* slave, ADC is enabled only (conversion is not started). If ADC is */
/* master, ADC is enabled and conversion is started. */
if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO))
{
if (ADC_IS_SOFTWARE_START_INJECTED(hadc) &&
ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc) )
{
/* Start ADC conversion on injected group with SW start */
SET_BIT(hadc->Instance->CR2, (ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG));
}
else
{
/* Start ADC conversion on injected group with external trigger */
SET_BIT(hadc->Instance->CR2, ADC_CR2_JEXTTRIG);
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop conversion of injected channels. Disable ADC peripheral if
* no regular conversion is on going.
* @note If ADC must be disabled and if conversion is on going on
* regular group, function HAL_ADC_Stop must be used to stop both
* injected and regular groups, and disable the ADC.
* @note If injected group mode auto-injection is enabled,
* function HAL_ADC_Stop must be used.
* @note In case of auto-injection mode, HAL_ADC_Stop must be used.
* @param hadc: ADC handle
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStop(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion and disable ADC peripheral */
/* Conditioned to: */
/* - No conversion on the other group (regular group) is intended to */
/* continue (injected and regular groups stop conversion and ADC disable */
/* are common) */
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) &&
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
{
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Wait for injected group conversion to be completed.
* @param hadc: ADC handle
* @param Timeout: Timeout value in millisecond.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedPollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
uint32_t tickstart;
/* Variables for polling in case of scan mode enabled and polling for each */
/* conversion. */
__IO uint32_t Conversion_Timeout_CPU_cycles = 0U;
uint32_t Conversion_Timeout_CPU_cycles_max = 0U;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Get timeout */
tickstart = HAL_GetTick();
/* Polling for end of conversion: differentiation if single/sequence */
/* conversion. */
/* For injected group, flag JEOC is set only at the end of the sequence, */
/* not for each conversion within the sequence. */
/* - If single conversion for injected group (scan mode disabled or */
/* InjectedNbrOfConversion ==1), flag JEOC is used to determine the */
/* conversion completion. */
/* - If sequence conversion for injected group (scan mode enabled and */
/* InjectedNbrOfConversion >=2), flag JEOC is set only at the end of the */
/* sequence. */
/* To poll for each conversion, the maximum conversion time is computed */
/* from ADC conversion time (selected sampling time + conversion time of */
/* 12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on */
/* settings, conversion time range can be from 28 to 32256 CPU cycles). */
/* As flag JEOC is not set after each conversion, no timeout status can */
/* be set. */
if ((hadc->Instance->JSQR & ADC_JSQR_JL) == RESET)
{
/* Wait until End of Conversion flag is raised */
while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_JEOC))
{
/* Check if timeout is disabled (set to infinite wait) */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
{
/* Update ADC state machine to timeout */
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_TIMEOUT;
}
}
}
}
else
{
/* Replace polling by wait for maximum conversion time */
/* - Computation of CPU clock cycles corresponding to ADC clock cycles */
/* and ADC maximum conversion cycles on all channels. */
/* - Wait for the expected ADC clock cycles delay */
Conversion_Timeout_CPU_cycles_max = ((SystemCoreClock
/ HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC))
* ADC_CONVCYCLES_MAX_RANGE(hadc) );
while(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
{
/* Check if timeout is disabled (set to infinite wait) */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Update ADC state machine to timeout */
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_TIMEOUT;
}
}
Conversion_Timeout_CPU_cycles ++;
}
}
/* Clear injected group conversion flag */
/* Note: On STM32F1 ADC, clear regular conversion flag raised */
/* simultaneously. */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JSTRT | ADC_FLAG_JEOC | ADC_FLAG_EOC);
/* Update ADC state machine */
SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
/* Determine whether any further conversion upcoming on group injected */
/* by external trigger or by automatic injected conversion */
/* from group regular. */
if(ADC_IS_SOFTWARE_START_INJECTED(hadc) ||
(HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&
(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
(hadc->Init.ContinuousConvMode == DISABLE) ) ) )
{
/* Set ADC state */
CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
{
SET_BIT(hadc->State, HAL_ADC_STATE_READY);
}
}
/* Return ADC state */
return HAL_OK;
}
/**
* @brief Enables ADC, starts conversion of injected group with interruption.
* - JEOC (end of conversion of injected group)
* Each of these interruptions has its dedicated callback function.
* @param hadc: ADC handle
* @retval HAL status.
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStart_IT(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Enable the ADC peripheral */
tmp_hal_status = ADC_Enable(hadc);
/* Start conversion if ADC is effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state */
/* - Clear state bitfield related to injected group conversion results */
/* - Set state bitfield related to injected operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_INJ_EOC,
HAL_ADC_STATE_INJ_BUSY);
/* Case of independent mode or multimode (for devices with several ADCs): */
/* Set multimode state. */
if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
{
CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
else
{
SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
}
/* Check if a regular conversion is ongoing */
/* Note: On this device, there is no ADC error code fields related to */
/* conversions on group injected only. In case of conversion on */
/* going on group regular, no error code is reset. */
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
{
/* Reset ADC all error code fields */
ADC_CLEAR_ERRORCODE(hadc);
}
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Clear injected group conversion flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_JEOC);
/* Enable end of conversion interrupt for injected channels */
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_JEOC);
/* Start conversion of injected group if software start has been selected */
/* and if automatic injected conversion is disabled. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* If automatic injected conversion is enabled, conversion will start */
/* after next regular group conversion. */
if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO))
{
if (ADC_IS_SOFTWARE_START_INJECTED(hadc) &&
ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc) )
{
/* Start ADC conversion on injected group with SW start */
SET_BIT(hadc->Instance->CR2, (ADC_CR2_JSWSTART | ADC_CR2_JEXTTRIG));
}
else
{
/* Start ADC conversion on injected group with external trigger */
SET_BIT(hadc->Instance->CR2, ADC_CR2_JEXTTRIG);
}
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop conversion of injected channels, disable interruption of
* end-of-conversion. Disable ADC peripheral if no regular conversion
* is on going.
* @note If ADC must be disabled and if conversion is on going on
* regular group, function HAL_ADC_Stop must be used to stop both
* injected and regular groups, and disable the ADC.
* @note If injected group mode auto-injection is enabled,
* function HAL_ADC_Stop must be used.
* @param hadc: ADC handle
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedStop_IT(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion and disable ADC peripheral */
/* Conditioned to: */
/* - No conversion on the other group (regular group) is intended to */
/* continue (injected and regular groups stop conversion and ADC disable */
/* are common) */
/* - In case of auto-injection mode, HAL_ADC_Stop must be used. */
if(((hadc->State & HAL_ADC_STATE_REG_BUSY) == RESET) &&
HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) )
{
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC peripheral */
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if (tmp_hal_status == HAL_OK)
{
/* Disable ADC end of conversion interrupt for injected channels */
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
/* Set ADC state */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/**
* @brief Enables ADC, starts conversion of regular group and transfers result
* through DMA.
* Multimode must have been previously configured using
* HAL_ADCEx_MultiModeConfigChannel() function.
* Interruptions enabled in this function:
* - DMA transfer complete
* - DMA half transfer
* Each of these interruptions has its dedicated callback function.
* @note: On STM32F1 devices, ADC slave regular group must be configured
* with conversion trigger ADC_SOFTWARE_START.
* @note: ADC slave can be enabled preliminarily using single-mode
* HAL_ADC_Start() function.
* @param hadc: ADC handle of ADC master (handle of ADC slave must not be used)
* @param pData: The destination Buffer address.
* @param Length: The length of data to be transferred from ADC peripheral to memory.
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStart_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
ADC_HandleTypeDef tmphadcSlave;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
/* Process locked */
__HAL_LOCK(hadc);
/* Set a temporary handle of the ADC slave associated to the ADC master */
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
/* On STM32F1 devices, ADC slave regular group must be configured with */
/* conversion trigger ADC_SOFTWARE_START. */
/* Note: External trigger of ADC slave must be enabled, it is already done */
/* into function "HAL_ADC_Init()". */
if(!ADC_IS_SOFTWARE_START_REGULAR(&tmphadcSlave))
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
/* Enable the ADC peripherals: master and slave (in case if not already */
/* enabled previously) */
tmp_hal_status = ADC_Enable(hadc);
if (tmp_hal_status == HAL_OK)
{
tmp_hal_status = ADC_Enable(&tmphadcSlave);
}
/* Start conversion if all ADCs of multimode are effectively enabled */
if (tmp_hal_status == HAL_OK)
{
/* Set ADC state (ADC master) */
/* - Clear state bitfield related to regular group conversion results */
/* - Set state bitfield related to regular operation */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_MULTIMODE_SLAVE,
HAL_ADC_STATE_REG_BUSY);
/* If conversions on group regular are also triggering group injected, */
/* update ADC state. */
if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
{
ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
}
/* Process unlocked */
/* Unlock before starting ADC conversions: in case of potential */
/* interruption, to let the process to ADC IRQ Handler. */
__HAL_UNLOCK(hadc);
/* Set ADC error code to none */
ADC_CLEAR_ERRORCODE(hadc);
/* Set the DMA transfer complete callback */
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
/* Set the DMA half transfer complete callback */
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
/* Set the DMA error callback */
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
/* start (in case of SW start): */
/* Clear regular group conversion flag and overrun flag */
/* (To ensure of no unknown state from potential previous ADC operations) */
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
/* Enable ADC DMA mode of ADC master */
SET_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
/* Start the DMA channel */
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
/* Start conversion of regular group if software start has been selected. */
/* If external trigger has been selected, conversion will start at next */
/* trigger event. */
/* Note: Alternate trigger for single conversion could be to force an */
/* additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
if (ADC_IS_SOFTWARE_START_REGULAR(hadc))
{
/* Start ADC conversion on regular group with SW start */
SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
}
else
{
/* Start ADC conversion on regular group with external trigger */
SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
}
}
else
{
/* Process unlocked */
__HAL_UNLOCK(hadc);
}
/* Return function status */
return tmp_hal_status;
}
/**
* @brief Stop ADC conversion of regular group (and injected channels in
* case of auto_injection mode), disable ADC DMA transfer, disable
* ADC peripheral.
* @note Multimode is kept enabled after this function. To disable multimode
* (set with HAL_ADCEx_MultiModeConfigChannel(), ADC must be
* reinitialized using HAL_ADC_Init() or HAL_ADC_ReInit().
* @note In case of DMA configured in circular mode, function
* HAL_ADC_Stop_DMA must be called after this function with handle of
* ADC slave, to properly disable the DMA channel.
* @param hadc: ADC handle of ADC master (handle of ADC slave must not be used)
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeStop_DMA(ADC_HandleTypeDef* hadc)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
ADC_HandleTypeDef tmphadcSlave;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
/* Process locked */
__HAL_LOCK(hadc);
/* Stop potential conversion on going, on regular and injected groups */
/* Disable ADC master peripheral */
tmp_hal_status = ADC_ConversionStop_Disable(hadc);
/* Check if ADC is effectively disabled */
if(tmp_hal_status == HAL_OK)
{
/* Set a temporary handle of the ADC slave associated to the ADC master */
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
/* Disable ADC slave peripheral */
tmp_hal_status = ADC_ConversionStop_Disable(&tmphadcSlave);
/* Check if ADC is effectively disabled */
if(tmp_hal_status != HAL_OK)
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
/* Process unlocked */
__HAL_UNLOCK(hadc);
return HAL_ERROR;
}
/* Disable ADC DMA mode */
CLEAR_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
/* Reset configuration of ADC DMA continuous request for dual mode */
CLEAR_BIT(hadc->Instance->CR1, ADC_CR1_DUALMOD);
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
/* while DMA transfer is on going) */
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
/* Change ADC state (ADC master) */
ADC_STATE_CLR_SET(hadc->State,
HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
HAL_ADC_STATE_READY);
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @brief Get ADC injected group conversion result.
* @note Reading register JDRx automatically clears ADC flag JEOC
* (ADC group injected end of unitary conversion).
* @note This function does not clear ADC flag JEOS
* (ADC group injected end of sequence conversion)
* Occurrence of flag JEOS rising:
* - If sequencer is composed of 1 rank, flag JEOS is equivalent
* to flag JEOC.
* - If sequencer is composed of several ranks, during the scan
* sequence flag JEOC only is raised, at the end of the scan sequence
* both flags JEOC and EOS are raised.
* Flag JEOS must not be cleared by this function because
* it would not be compliant with low power features
* (feature low power auto-wait, not available on all STM32 families).
* To clear this flag, either use function:
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
* model polling: @ref HAL_ADCEx_InjectedPollForConversion()
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_JEOS).
* @param hadc: ADC handle
* @param InjectedRank: the converted ADC injected rank.
* This parameter can be one of the following values:
* @arg ADC_INJECTED_RANK_1: Injected Channel1 selected
* @arg ADC_INJECTED_RANK_2: Injected Channel2 selected
* @arg ADC_INJECTED_RANK_3: Injected Channel3 selected
* @arg ADC_INJECTED_RANK_4: Injected Channel4 selected
* @retval ADC group injected conversion data
*/
uint32_t HAL_ADCEx_InjectedGetValue(ADC_HandleTypeDef* hadc, uint32_t InjectedRank)
{
uint32_t tmp_jdr = 0U;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_INJECTED_RANK(InjectedRank));
/* Get ADC converted value */
switch(InjectedRank)
{
case ADC_INJECTED_RANK_4:
tmp_jdr = hadc->Instance->JDR4;
break;
case ADC_INJECTED_RANK_3:
tmp_jdr = hadc->Instance->JDR3;
break;
case ADC_INJECTED_RANK_2:
tmp_jdr = hadc->Instance->JDR2;
break;
case ADC_INJECTED_RANK_1:
default:
tmp_jdr = hadc->Instance->JDR1;
break;
}
/* Return ADC converted value */
return tmp_jdr;
}
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/**
* @brief Returns the last ADC Master&Slave regular conversions results data
* in the selected multi mode.
* @param hadc: ADC handle of ADC master (handle of ADC slave must not be used)
* @retval The converted data value.
*/
uint32_t HAL_ADCEx_MultiModeGetValue(ADC_HandleTypeDef* hadc)
{
uint32_t tmpDR = 0U;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
/* Note: EOC flag is not cleared here by software because automatically */
/* cleared by hardware when reading register DR. */
/* On STM32F1 devices, ADC1 data register DR contains ADC2 conversions */
/* only if ADC1 DMA mode is enabled. */
tmpDR = hadc->Instance->DR;
if (HAL_IS_BIT_CLR(ADC1->CR2, ADC_CR2_DMA))
{
tmpDR |= (ADC2->DR << 16U);
}
/* Return ADC converted value */
return tmpDR;
}
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @brief Injected conversion complete callback in non blocking mode
* @param hadc: ADC handle
* @retval None
*/
__weak void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef* hadc)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hadc);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_ADCEx_InjectedConvCpltCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup ADCEx_Exported_Functions_Group2 Extended Peripheral Control functions
* @brief Extended Peripheral Control functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure channels on injected group
(+) Configure multimode
@endverbatim
* @{
*/
/**
* @brief Configures the ADC injected group and the selected channel to be
* linked to the injected group.
* @note Possibility to update parameters on the fly:
* This function initializes injected group, following calls to this
* function can be used to reconfigure some parameters of structure
* "ADC_InjectionConfTypeDef" on the fly, without reseting the ADC.
* The setting of these parameters is conditioned to ADC state:
* this function must be called when ADC is not under conversion.
* @param hadc: ADC handle
* @param sConfigInjected: Structure of ADC injected group and ADC channel for
* injected group.
* @retval None
*/
HAL_StatusTypeDef HAL_ADCEx_InjectedConfigChannel(ADC_HandleTypeDef* hadc, ADC_InjectionConfTypeDef* sConfigInjected)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
__IO uint32_t wait_loop_index = 0U;
/* Check the parameters */
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
assert_param(IS_ADC_CHANNEL(sConfigInjected->InjectedChannel));
assert_param(IS_ADC_SAMPLE_TIME(sConfigInjected->InjectedSamplingTime));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->AutoInjectedConv));
assert_param(IS_ADC_EXTTRIGINJEC(sConfigInjected->ExternalTrigInjecConv));
assert_param(IS_ADC_RANGE(sConfigInjected->InjectedOffset));
if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
{
assert_param(IS_ADC_INJECTED_RANK(sConfigInjected->InjectedRank));
assert_param(IS_ADC_INJECTED_NB_CONV(sConfigInjected->InjectedNbrOfConversion));
assert_param(IS_FUNCTIONAL_STATE(sConfigInjected->InjectedDiscontinuousConvMode));
}
/* Process locked */
__HAL_LOCK(hadc);
/* Configuration of injected group sequencer: */
/* - if scan mode is disabled, injected channels sequence length is set to */
/* 0x00: 1 channel converted (channel on regular rank 1) */
/* Parameter "InjectedNbrOfConversion" is discarded. */
/* Note: Scan mode is present by hardware on this device and, if */
/* disabled, discards automatically nb of conversions. Anyway, nb of */
/* conversions is forced to 0x00 for alignment over all STM32 devices. */
/* - if scan mode is enabled, injected channels sequence length is set to */
/* parameter "InjectedNbrOfConversion". */
if (hadc->Init.ScanConvMode == ADC_SCAN_DISABLE)
{
if (sConfigInjected->InjectedRank == ADC_INJECTED_RANK_1)
{
/* Clear the old SQx bits for all injected ranks */
MODIFY_REG(hadc->Instance->JSQR ,
ADC_JSQR_JL |
ADC_JSQR_JSQ4 |
ADC_JSQR_JSQ3 |
ADC_JSQR_JSQ2 |
ADC_JSQR_JSQ1 ,
ADC_JSQR_RK_JL(sConfigInjected->InjectedChannel,
ADC_INJECTED_RANK_1,
0x01U));
}
/* If another injected rank than rank1 was intended to be set, and could */
/* not due to ScanConvMode disabled, error is reported. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
}
else
{
/* Since injected channels rank conv. order depends on total number of */
/* injected conversions, selected rank must be below or equal to total */
/* number of injected conversions to be updated. */
if (sConfigInjected->InjectedRank <= sConfigInjected->InjectedNbrOfConversion)
{
/* Clear the old SQx bits for the selected rank */
/* Set the SQx bits for the selected rank */
MODIFY_REG(hadc->Instance->JSQR ,
ADC_JSQR_JL |
ADC_JSQR_RK_JL(ADC_JSQR_JSQ1,
sConfigInjected->InjectedRank,
sConfigInjected->InjectedNbrOfConversion) ,
ADC_JSQR_JL_SHIFT(sConfigInjected->InjectedNbrOfConversion) |
ADC_JSQR_RK_JL(sConfigInjected->InjectedChannel,
sConfigInjected->InjectedRank,
sConfigInjected->InjectedNbrOfConversion) );
}
else
{
/* Clear the old SQx bits for the selected rank */
MODIFY_REG(hadc->Instance->JSQR ,
ADC_JSQR_JL |
ADC_JSQR_RK_JL(ADC_JSQR_JSQ1,
sConfigInjected->InjectedRank,
sConfigInjected->InjectedNbrOfConversion) ,
0x00000000U);
}
}
/* Configuration of injected group */
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated only when ADC is disabled: */
/* - external trigger to start conversion */
/* Parameters update not conditioned to ADC state: */
/* - Automatic injected conversion */
/* - Injected discontinuous mode */
/* Note: In case of ADC already enabled, caution to not launch an unwanted */
/* conversion while modifying register CR2 by writing 1 to bit ADON. */
if (ADC_IS_ENABLE(hadc) == RESET)
{
MODIFY_REG(hadc->Instance->CR2 ,
ADC_CR2_JEXTSEL |
ADC_CR2_ADON ,
ADC_CFGR_JEXTSEL(hadc, sConfigInjected->ExternalTrigInjecConv) );
}
/* Configuration of injected group */
/* - Automatic injected conversion */
/* - Injected discontinuous mode */
/* Automatic injected conversion can be enabled if injected group */
/* external triggers are disabled. */
if (sConfigInjected->AutoInjectedConv == ENABLE)
{
if (sConfigInjected->ExternalTrigInjecConv == ADC_INJECTED_SOFTWARE_START)
{
SET_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO);
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
}
/* Injected discontinuous can be enabled only if auto-injected mode is */
/* disabled. */
if (sConfigInjected->InjectedDiscontinuousConvMode == ENABLE)
{
if (sConfigInjected->AutoInjectedConv == DISABLE)
{
SET_BIT(hadc->Instance->CR1, ADC_CR1_JDISCEN);
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
}
/* InjectedChannel sampling time configuration */
/* For channels 10 to 17 */
if (sConfigInjected->InjectedChannel >= ADC_CHANNEL_10)
{
MODIFY_REG(hadc->Instance->SMPR1 ,
ADC_SMPR1(ADC_SMPR1_SMP10, sConfigInjected->InjectedChannel) ,
ADC_SMPR1(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel) );
}
else /* For channels 0 to 9 */
{
MODIFY_REG(hadc->Instance->SMPR2 ,
ADC_SMPR2(ADC_SMPR2_SMP0, sConfigInjected->InjectedChannel) ,
ADC_SMPR2(sConfigInjected->InjectedSamplingTime, sConfigInjected->InjectedChannel) );
}
/* If ADC1 InjectedChannel_16 or InjectedChannel_17 is selected, enable Temperature sensor */
/* and VREFINT measurement path. */
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) ||
(sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT) )
{
SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
}
/* Configure the offset: offset enable/disable, InjectedChannel, offset value */
switch(sConfigInjected->InjectedRank)
{
case 1:
/* Set injected channel 1 offset */
MODIFY_REG(hadc->Instance->JOFR1,
ADC_JOFR1_JOFFSET1,
sConfigInjected->InjectedOffset);
break;
case 2:
/* Set injected channel 2 offset */
MODIFY_REG(hadc->Instance->JOFR2,
ADC_JOFR2_JOFFSET2,
sConfigInjected->InjectedOffset);
break;
case 3:
/* Set injected channel 3 offset */
MODIFY_REG(hadc->Instance->JOFR3,
ADC_JOFR3_JOFFSET3,
sConfigInjected->InjectedOffset);
break;
case 4:
default:
MODIFY_REG(hadc->Instance->JOFR4,
ADC_JOFR4_JOFFSET4,
sConfigInjected->InjectedOffset);
break;
}
/* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor */
/* and VREFINT measurement path. */
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR) ||
(sConfigInjected->InjectedChannel == ADC_CHANNEL_VREFINT) )
{
/* For STM32F1 devices with several ADC: Only ADC1 can access internal */
/* measurement channels (VrefInt/TempSensor). If these channels are */
/* intended to be set on other ADC instances, an error is reported. */
if (hadc->Instance == ADC1)
{
if (READ_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE) == RESET)
{
SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
if ((sConfigInjected->InjectedChannel == ADC_CHANNEL_TEMPSENSOR))
{
/* Delay for temperature sensor stabilization time */
/* Compute number of CPU cycles to wait for */
wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
while(wait_loop_index != 0U)
{
wait_loop_index--;
}
}
}
}
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
#if defined (STM32F103x6) || defined (STM32F103xB) || defined (STM32F105xC) || defined (STM32F107xC) || defined (STM32F103xE) || defined (STM32F103xG)
/**
* @brief Enable ADC multimode and configure multimode parameters
* @note Possibility to update parameters on the fly:
* This function initializes multimode parameters, following
* calls to this function can be used to reconfigure some parameters
* of structure "ADC_MultiModeTypeDef" on the fly, without reseting
* the ADCs (both ADCs of the common group).
* The setting of these parameters is conditioned to ADC state.
* For parameters constraints, see comments of structure
* "ADC_MultiModeTypeDef".
* @note To change back configuration from multimode to single mode, ADC must
* be reset (using function HAL_ADC_Init() ).
* @param hadc: ADC handle
* @param multimode: Structure of ADC multimode configuration
* @retval HAL status
*/
HAL_StatusTypeDef HAL_ADCEx_MultiModeConfigChannel(ADC_HandleTypeDef* hadc, ADC_MultiModeTypeDef* multimode)
{
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
ADC_HandleTypeDef tmphadcSlave;
/* Check the parameters */
assert_param(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance));
assert_param(IS_ADC_MODE(multimode->Mode));
/* Process locked */
__HAL_LOCK(hadc);
/* Set a temporary handle of the ADC slave associated to the ADC master */
ADC_MULTI_SLAVE(hadc, &tmphadcSlave);
/* Parameters update conditioned to ADC state: */
/* Parameters that can be updated when ADC is disabled or enabled without */
/* conversion on going on regular group: */
/* - ADC master and ADC slave DMA configuration */
/* Parameters that can be updated only when ADC is disabled: */
/* - Multimode mode selection */
/* To optimize code, all multimode settings can be set when both ADCs of */
/* the common group are in state: disabled. */
if ((ADC_IS_ENABLE(hadc) == RESET) &&
(ADC_IS_ENABLE(&tmphadcSlave) == RESET) &&
(IS_ADC_MULTIMODE_MASTER_INSTANCE(hadc->Instance)) )
{
MODIFY_REG(hadc->Instance->CR1,
ADC_CR1_DUALMOD ,
multimode->Mode );
}
/* If one of the ADC sharing the same common group is enabled, no update */
/* could be done on neither of the multimode structure parameters. */
else
{
/* Update ADC state machine to error */
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
tmp_hal_status = HAL_ERROR;
}
/* Process unlocked */
__HAL_UNLOCK(hadc);
/* Return function status */
return tmp_hal_status;
}
#endif /* defined STM32F103x6 || defined STM32F103xB || defined STM32F105xC || defined STM32F107xC || defined STM32F103xE || defined STM32F103xG */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_ADC_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/