klipper/klippy/extras/probe.py

416 lines
19 KiB
Python

# Z-Probe support
#
# Copyright (C) 2017-2020 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import pins, homing, manual_probe
HINT_TIMEOUT = """
Make sure to home the printer before probing. If the probe
did not move far enough to trigger, then consider reducing
the Z axis minimum position so the probe can travel further
(the Z minimum position can be negative).
"""
class PrinterProbe:
def __init__(self, config, mcu_probe):
self.printer = config.get_printer()
self.name = config.get_name()
self.mcu_probe = mcu_probe
self.speed = config.getfloat('speed', 5.0, above=0.)
self.lift_speed = config.getfloat('lift_speed', self.speed, above=0.)
self.x_offset = config.getfloat('x_offset', 0.)
self.y_offset = config.getfloat('y_offset', 0.)
self.z_offset = config.getfloat('z_offset')
self.probe_calibrate_z = 0.
self.multi_probe_pending = False
# Infer Z position to move to during a probe
if config.has_section('stepper_z'):
zconfig = config.getsection('stepper_z')
self.z_position = zconfig.getfloat('position_min', 0.)
else:
pconfig = config.getsection('printer')
self.z_position = pconfig.getfloat('minimum_z_position', 0.)
# Multi-sample support (for improved accuracy)
self.sample_count = config.getint('samples', 1, minval=1)
self.sample_retract_dist = config.getfloat('sample_retract_dist', 2.,
above=0.)
atypes = {'median': 'median', 'average': 'average'}
self.samples_result = config.getchoice('samples_result', atypes,
'average')
self.samples_tolerance = config.getfloat('samples_tolerance', 0.100,
minval=0.)
self.samples_retries = config.getint('samples_tolerance_retries', 0,
minval=0)
# Register z_virtual_endstop pin
self.printer.lookup_object('pins').register_chip('probe', self)
# Register homing event handlers
self.printer.register_event_handler("homing:homing_move_begin",
self._handle_homing_move_begin)
self.printer.register_event_handler("homing:homing_move_end",
self._handle_homing_move_end)
self.printer.register_event_handler("homing:home_rails_begin",
self._handle_home_rails_begin)
self.printer.register_event_handler("homing:home_rails_end",
self._handle_home_rails_end)
self.printer.register_event_handler("gcode:command_error",
self._handle_command_error)
# Register PROBE/QUERY_PROBE commands
self.gcode = self.printer.lookup_object('gcode')
self.gcode.register_command('PROBE', self.cmd_PROBE,
desc=self.cmd_PROBE_help)
self.gcode.register_command('QUERY_PROBE', self.cmd_QUERY_PROBE,
desc=self.cmd_QUERY_PROBE_help)
self.gcode.register_command('PROBE_CALIBRATE', self.cmd_PROBE_CALIBRATE,
desc=self.cmd_PROBE_CALIBRATE_help)
self.gcode.register_command('PROBE_ACCURACY', self.cmd_PROBE_ACCURACY,
desc=self.cmd_PROBE_ACCURACY_help)
def _handle_homing_move_begin(self, endstops):
if self.mcu_probe in endstops:
self.mcu_probe.probe_prepare()
def _handle_homing_move_end(self, endstops):
if self.mcu_probe in endstops:
self.mcu_probe.probe_finish()
def _handle_home_rails_begin(self, rails):
endstops = [es for rail in rails for es, name in rail.get_endstops()]
if self.mcu_probe in endstops:
self.multi_probe_begin()
def _handle_home_rails_end(self, rails):
endstops = [es for rail in rails for es, name in rail.get_endstops()]
if self.mcu_probe in endstops:
self.multi_probe_end()
def _handle_command_error(self):
try:
self.multi_probe_end()
except:
logging.exception("Multi-probe end")
def multi_probe_begin(self):
self.mcu_probe.multi_probe_begin()
self.multi_probe_pending = True
def multi_probe_end(self):
if self.multi_probe_pending:
self.multi_probe_pending = False
self.mcu_probe.multi_probe_end()
def setup_pin(self, pin_type, pin_params):
if pin_type != 'endstop' or pin_params['pin'] != 'z_virtual_endstop':
raise pins.error("Probe virtual endstop only useful as endstop pin")
if pin_params['invert'] or pin_params['pullup']:
raise pins.error("Can not pullup/invert probe virtual endstop")
return self.mcu_probe
def get_lift_speed(self, gcmd=None):
if gcmd is not None:
return gcmd.get_float("LIFT_SPEED", self.lift_speed, above=0.)
return self.lift_speed
def get_offsets(self):
return self.x_offset, self.y_offset, self.z_offset
def _probe(self, speed):
toolhead = self.printer.lookup_object('toolhead')
homing_state = homing.Homing(self.printer)
pos = toolhead.get_position()
pos[2] = self.z_position
endstops = [(self.mcu_probe, "probe")]
verify = self.printer.get_start_args().get('debugoutput') is None
try:
homing_state.homing_move(pos, endstops, speed,
probe_pos=True, verify_movement=verify)
except homing.CommandError as e:
reason = str(e)
if "Timeout during endstop homing" in reason:
reason += HINT_TIMEOUT
raise homing.CommandError(reason)
pos = toolhead.get_position()
self.gcode.respond_info("probe at %.3f,%.3f is z=%.6f"
% (pos[0], pos[1], pos[2]))
self.gcode.reset_last_position()
return pos[:3]
def _move(self, coord, speed):
toolhead = self.printer.lookup_object('toolhead')
curpos = toolhead.get_position()
for i in range(len(coord)):
if coord[i] is not None:
curpos[i] = coord[i]
toolhead.move(curpos, speed)
self.gcode.reset_last_position()
def _calc_mean(self, positions):
count = float(len(positions))
return [sum([pos[i] for pos in positions]) / count
for i in range(3)]
def _calc_median(self, positions):
z_sorted = sorted(positions, key=(lambda p: p[2]))
middle = len(positions) // 2
if (len(positions) & 1) == 1:
# odd number of samples
return z_sorted[middle]
# even number of samples
return self._calc_mean(z_sorted[middle-1:middle+1])
def run_probe(self, gcmd):
speed = gcmd.get_float("PROBE_SPEED", self.speed, above=0.)
lift_speed = self.get_lift_speed(gcmd)
sample_count = gcmd.get_int("SAMPLES", self.sample_count, minval=1)
sample_retract_dist = gcmd.get_float("SAMPLE_RETRACT_DIST",
self.sample_retract_dist, above=0.)
samples_tolerance = gcmd.get_float("SAMPLES_TOLERANCE",
self.samples_tolerance, minval=0.)
samples_retries = gcmd.get_int("SAMPLES_TOLERANCE_RETRIES",
self.samples_retries, minval=0)
samples_result = gcmd.get("SAMPLES_RESULT", self.samples_result)
must_notify_multi_probe = not self.multi_probe_pending
if must_notify_multi_probe:
self.multi_probe_begin()
retries = 0
positions = []
while len(positions) < sample_count:
# Probe position
pos = self._probe(speed)
positions.append(pos)
# Check samples tolerance
z_positions = [p[2] for p in positions]
if max(z_positions) - min(z_positions) > samples_tolerance:
if retries >= samples_retries:
raise homing.CommandError(
"Probe samples exceed samples_tolerance")
gcmd.respond_info("Probe samples exceed tolerance. Retrying...")
retries += 1
positions = []
# Retract
if len(positions) < sample_count:
liftpos = [None, None, pos[2] + sample_retract_dist]
self._move(liftpos, lift_speed)
if must_notify_multi_probe:
self.multi_probe_end()
# Calculate and return result
if samples_result == 'median':
return self._calc_median(positions)
return self._calc_mean(positions)
cmd_PROBE_help = "Probe Z-height at current XY position"
def cmd_PROBE(self, gcmd):
pos = self.run_probe(gcmd)
gcmd.respond_info("Result is z=%.6f" % (pos[2],))
cmd_QUERY_PROBE_help = "Return the status of the z-probe"
def cmd_QUERY_PROBE(self, gcmd):
toolhead = self.printer.lookup_object('toolhead')
print_time = toolhead.get_last_move_time()
res = self.mcu_probe.query_endstop(print_time)
gcmd.respond_info("probe: %s" % (["open", "TRIGGERED"][not not res],))
cmd_PROBE_ACCURACY_help = "Probe Z-height accuracy at current XY position"
def cmd_PROBE_ACCURACY(self, gcmd):
speed = gcmd.get_float("PROBE_SPEED", self.speed, above=0.)
lift_speed = self.get_lift_speed(gcmd)
sample_count = gcmd.get_int("SAMPLES", 10, minval=1)
sample_retract_dist = gcmd.get_float("SAMPLE_RETRACT_DIST",
self.sample_retract_dist, above=0.)
toolhead = self.printer.lookup_object('toolhead')
pos = toolhead.get_position()
gcmd.respond_info("PROBE_ACCURACY at X:%.3f Y:%.3f Z:%.3f"
" (samples=%d retract=%.3f"
" speed=%.1f lift_speed=%.1f)\n"
% (pos[0], pos[1], pos[2],
sample_count, sample_retract_dist,
speed, lift_speed))
# Probe bed sample_count times
self.multi_probe_begin()
positions = []
while len(positions) < sample_count:
# Probe position
pos = self._probe(speed)
positions.append(pos)
# Retract
liftpos = [None, None, pos[2] + sample_retract_dist]
self._move(liftpos, lift_speed)
self.multi_probe_end()
# Calculate maximum, minimum and average values
max_value = max([p[2] for p in positions])
min_value = min([p[2] for p in positions])
range_value = max_value - min_value
avg_value = self._calc_mean(positions)[2]
median = self._calc_median(positions)[2]
# calculate the standard deviation
deviation_sum = 0
for i in range(len(positions)):
deviation_sum += pow(positions[i][2] - avg_value, 2.)
sigma = (deviation_sum / len(positions)) ** 0.5
# Show information
gcmd.respond_info(
"probe accuracy results: maximum %.6f, minimum %.6f, range %.6f, "
"average %.6f, median %.6f, standard deviation %.6f" % (
max_value, min_value, range_value, avg_value, median, sigma))
def probe_calibrate_finalize(self, kin_pos):
if kin_pos is None:
return
z_offset = self.probe_calibrate_z - kin_pos[2]
self.gcode.respond_info(
"%s: z_offset: %.3f\n"
"The SAVE_CONFIG command will update the printer config file\n"
"with the above and restart the printer." % (self.name, z_offset))
configfile = self.printer.lookup_object('configfile')
configfile.set(self.name, 'z_offset', "%.3f" % (z_offset,))
cmd_PROBE_CALIBRATE_help = "Calibrate the probe's z_offset"
def cmd_PROBE_CALIBRATE(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
# Perform initial probe
lift_speed = self.get_lift_speed(gcmd)
curpos = self.run_probe(gcmd)
# Move away from the bed
self.probe_calibrate_z = curpos[2]
curpos[2] += 5.
self._move(curpos, lift_speed)
# Move the nozzle over the probe point
curpos[0] += self.x_offset
curpos[1] += self.y_offset
self._move(curpos, self.speed)
# Start manual probe
manual_probe.ManualProbeHelper(self.printer, gcmd,
self.probe_calibrate_finalize)
# Endstop wrapper that enables probe specific features
class ProbeEndstopWrapper:
def __init__(self, config):
self.printer = config.get_printer()
self.position_endstop = config.getfloat('z_offset')
gcode_macro = self.printer.load_object(config, 'gcode_macro')
self.activate_gcode = gcode_macro.load_template(
config, 'activate_gcode', '')
self.deactivate_gcode = gcode_macro.load_template(
config, 'deactivate_gcode', '')
# Create an "endstop" object to handle the probe pin
ppins = self.printer.lookup_object('pins')
pin = config.get('pin')
pin_params = ppins.lookup_pin(pin, can_invert=True, can_pullup=True)
mcu = pin_params['chip']
mcu.register_config_callback(self._build_config)
self.mcu_endstop = mcu.setup_pin('endstop', pin_params)
# Wrappers
self.get_mcu = self.mcu_endstop.get_mcu
self.add_stepper = self.mcu_endstop.add_stepper
self.get_steppers = self.mcu_endstop.get_steppers
self.home_start = self.mcu_endstop.home_start
self.home_wait = self.mcu_endstop.home_wait
self.query_endstop = self.mcu_endstop.query_endstop
def _build_config(self):
kin = self.printer.lookup_object('toolhead').get_kinematics()
for stepper in kin.get_steppers():
if stepper.is_active_axis('z'):
self.add_stepper(stepper)
def multi_probe_begin(self):
pass
def multi_probe_end(self):
pass
def probe_prepare(self):
toolhead = self.printer.lookup_object('toolhead')
start_pos = toolhead.get_position()
self.activate_gcode.run_gcode_from_command()
if toolhead.get_position()[:3] != start_pos[:3]:
raise homing.CommandError(
"Toolhead moved during probe activate_gcode script")
def probe_finish(self):
toolhead = self.printer.lookup_object('toolhead')
start_pos = toolhead.get_position()
self.deactivate_gcode.run_gcode_from_command()
if toolhead.get_position()[:3] != start_pos[:3]:
raise homing.CommandError(
"Toolhead moved during probe deactivate_gcode script")
def get_position_endstop(self):
return self.position_endstop
# Helper code that can probe a series of points and report the
# position at each point.
class ProbePointsHelper:
def __init__(self, config, finalize_callback, default_points=None):
self.printer = config.get_printer()
self.finalize_callback = finalize_callback
self.probe_points = default_points
self.name = config.get_name()
self.gcode = self.printer.lookup_object('gcode')
# Read config settings
if default_points is None or config.get('points', None) is not None:
points = config.get('points').split('\n')
try:
points = [line.split(',', 1) for line in points if line.strip()]
self.probe_points = [(float(p[0].strip()), float(p[1].strip()))
for p in points]
except:
raise config.error("Unable to parse probe points in %s" % (
self.name))
self.horizontal_move_z = config.getfloat('horizontal_move_z', 5.)
self.speed = config.getfloat('speed', 50., above=0.)
self.use_offsets = False
# Internal probing state
self.lift_speed = self.speed
self.probe_offsets = (0., 0., 0.)
self.results = []
def minimum_points(self,n):
if len(self.probe_points) < n:
raise self.printer.config_error(
"Need at least %d probe points for %s" % (n, self.name))
def use_xy_offsets(self, use_offsets):
self.use_offsets = use_offsets
def get_lift_speed(self):
return self.lift_speed
def _move_next(self):
toolhead = self.printer.lookup_object('toolhead')
# Lift toolhead
speed = self.lift_speed
if not self.results:
# Use full speed to first probe position
speed = self.speed
curpos = toolhead.get_position()
curpos[2] = self.horizontal_move_z
toolhead.move(curpos, speed)
# Check if done probing
if len(self.results) >= len(self.probe_points):
self.gcode.reset_last_position()
toolhead.get_last_move_time()
res = self.finalize_callback(self.probe_offsets, self.results)
if res != "retry":
return True
self.results = []
# Move to next XY probe point
curpos[:2] = self.probe_points[len(self.results)]
if self.use_offsets:
curpos[0] -= self.probe_offsets[0]
curpos[1] -= self.probe_offsets[1]
toolhead.move(curpos, self.speed)
self.gcode.reset_last_position()
return False
def start_probe(self, gcmd):
manual_probe.verify_no_manual_probe(self.printer)
# Lookup objects
probe = self.printer.lookup_object('probe', None)
method = gcmd.get('METHOD', 'automatic').lower()
self.results = []
if probe is None or method != 'automatic':
# Manual probe
self.lift_speed = self.speed
self.probe_offsets = (0., 0., 0.)
self._manual_probe_start()
return
# Perform automatic probing
self.lift_speed = probe.get_lift_speed(gcmd)
self.probe_offsets = probe.get_offsets()
if self.horizontal_move_z < self.probe_offsets[2]:
raise gcmd.error("horizontal_move_z can't be less than"
" probe's z_offset")
probe.multi_probe_begin()
while 1:
done = self._move_next()
if done:
break
pos = probe.run_probe(gcmd)
self.results.append(pos)
probe.multi_probe_end()
def _manual_probe_start(self):
done = self._move_next()
if not done:
gcmd = self.gcode.create_gcode_command("", "", {})
manual_probe.ManualProbeHelper(self.printer, gcmd,
self._manual_probe_finalize)
def _manual_probe_finalize(self, kin_pos):
if kin_pos is None:
return
self.results.append(kin_pos)
self._manual_probe_start()
def load_config(config):
return PrinterProbe(config, ProbeEndstopWrapper(config))