klipper/klippy/toolhead.py

345 lines
15 KiB
Python

# Code for coordinating events on the printer toolhead
#
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging
import cartesian, delta, extruder
# Common suffixes: _d is distance (in mm), _v is velocity (in
# mm/second), _v2 is velocity squared (mm^2/s^2), _t is time (in
# seconds), _r is ratio (scalar between 0.0 and 1.0)
# Class to track each move request
class Move:
def __init__(self, toolhead, start_pos, end_pos, speed):
self.toolhead = toolhead
self.start_pos = tuple(start_pos)
self.end_pos = tuple(end_pos)
self.accel = toolhead.max_accel
self.is_kinematic_move = True
self.axes_d = axes_d = [end_pos[i] - start_pos[i] for i in (0, 1, 2, 3)]
self.move_d = move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
if not move_d:
# Extrude only move
self.move_d = move_d = abs(axes_d[3])
self.is_kinematic_move = False
self.min_move_t = move_d / speed
# Junction speeds are tracked in velocity squared. The
# delta_v2 is the maximum amount of this squared-velocity that
# can change in this move.
self.max_start_v2 = 0.
self.max_cruise_v2 = speed**2
self.delta_v2 = 2.0 * move_d * self.accel
self.max_smoothed_v2 = 0.
self.smooth_delta_v2 = 2.0 * move_d * toolhead.max_accel_to_decel
def limit_speed(self, speed, accel):
speed2 = speed**2
if speed2 < self.max_cruise_v2:
self.max_cruise_v2 = speed2
self.min_move_t = self.move_d / speed
self.accel = min(self.accel, accel)
self.delta_v2 = 2.0 * self.move_d * self.accel
self.smooth_delta_v2 = min(self.smooth_delta_v2, self.delta_v2)
def calc_junction(self, prev_move):
axes_d = self.axes_d
prev_axes_d = prev_move.axes_d
if (axes_d[2] or prev_axes_d[2] or self.accel != prev_move.accel
or not self.is_kinematic_move or not prev_move.is_kinematic_move):
return
# Allow extruder to calculate its maximum junction
extruder_v2 = self.toolhead.extruder.calc_junction(prev_move, self)
# Find max velocity using approximated centripetal velocity as
# described at:
# https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
junction_cos_theta = -((axes_d[0] * prev_axes_d[0]
+ axes_d[1] * prev_axes_d[1])
/ (self.move_d * prev_move.move_d))
if junction_cos_theta > 0.999999:
return
junction_cos_theta = max(junction_cos_theta, -0.999999)
sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta))
R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
self.max_start_v2 = min(
R * self.accel, self.max_cruise_v2, prev_move.max_cruise_v2
, extruder_v2, prev_move.max_start_v2 + prev_move.delta_v2)
self.max_smoothed_v2 = min(
self.max_start_v2
, prev_move.max_smoothed_v2 + prev_move.smooth_delta_v2)
def set_junction(self, start_v2, cruise_v2, end_v2):
# Determine accel, cruise, and decel portions of the move distance
inv_delta_v2 = 1. / self.delta_v2
self.accel_r = accel_r = (cruise_v2 - start_v2) * inv_delta_v2
self.decel_r = decel_r = (cruise_v2 - end_v2) * inv_delta_v2
self.cruise_r = cruise_r = 1. - accel_r - decel_r
# Determine move velocities
self.start_v = start_v = math.sqrt(start_v2)
self.cruise_v = cruise_v = math.sqrt(cruise_v2)
self.end_v = end_v = math.sqrt(end_v2)
# Determine time spent in each portion of move (time is the
# distance divided by average velocity)
self.accel_t = accel_r * self.move_d / ((start_v + cruise_v) * 0.5)
self.cruise_t = cruise_r * self.move_d / cruise_v
self.decel_t = decel_r * self.move_d / ((end_v + cruise_v) * 0.5)
def move(self):
# Generate step times for the move
next_move_time = self.toolhead.get_next_move_time()
if self.is_kinematic_move:
self.toolhead.kin.move(next_move_time, self)
if self.axes_d[3]:
self.toolhead.extruder.move(next_move_time, self)
self.toolhead.update_move_time(
self.accel_t + self.cruise_t + self.decel_t)
LOOKAHEAD_FLUSH_TIME = 0.250
# Class to track a list of pending move requests and to facilitate
# "look-ahead" across moves to reduce acceleration between moves.
class MoveQueue:
def __init__(self, extruder_lookahead):
self.extruder_lookahead = extruder_lookahead
self.queue = []
self.leftover = 0
self.next_start_v2 = 0.
self.junction_flush = LOOKAHEAD_FLUSH_TIME
def reset(self):
del self.queue[:]
self.leftover = 0
self.next_start_v2 = 0.
self.junction_flush = LOOKAHEAD_FLUSH_TIME
def flush(self, lazy=False):
self.junction_flush = LOOKAHEAD_FLUSH_TIME
update_flush_count = lazy
queue = self.queue
flush_count = len(queue)
# Traverse queue from last to first move and determine maximum
# junction speed assuming the robot comes to a complete stop
# after the last move.
delayed = []
next_end_v2 = next_smoothed_v2 = peak_cruise_v2 = 0.
for i in range(flush_count-1, self.leftover-1, -1):
move = queue[i]
reachable_start_v2 = next_end_v2 + move.delta_v2
start_v2 = min(move.max_start_v2, reachable_start_v2)
reachable_smoothed_v2 = next_smoothed_v2 + move.smooth_delta_v2
smoothed_v2 = min(move.max_smoothed_v2, reachable_smoothed_v2)
if smoothed_v2 < reachable_smoothed_v2:
# It's possible for this move to accelerate
if (smoothed_v2 + move.smooth_delta_v2 > next_smoothed_v2
or next_smoothed_v2 >= peak_cruise_v2):
# This move can both accelerate and decelerate
if update_flush_count and peak_cruise_v2:
flush_count = i
update_flush_count = False
peak_cruise_v2 = min(move.max_cruise_v2, (
smoothed_v2 + reachable_smoothed_v2) * .5)
if delayed:
# Propagate peak_cruise_v2 to any delayed moves
for m, ms_v2, me_v2 in delayed:
mc_v2 = min(peak_cruise_v2, ms_v2)
m.set_junction(min(ms_v2, mc_v2), mc_v2
, min(me_v2, mc_v2))
del delayed[:]
cruise_v2 = min((start_v2 + reachable_start_v2) * .5
, move.max_cruise_v2, peak_cruise_v2)
if not update_flush_count and i < flush_count:
move.set_junction(min(start_v2, cruise_v2), cruise_v2
, min(next_end_v2, cruise_v2))
elif not update_flush_count:
# Delay calculating this move until peak_cruise_v2 is known
delayed.append((move, start_v2, next_end_v2))
next_end_v2 = start_v2
next_smoothed_v2 = smoothed_v2
if update_flush_count:
return
# Allow extruder to do its lookahead
move_count = self.extruder_lookahead(queue, flush_count, lazy)
# Generate step times for all moves ready to be flushed
for move in queue[:move_count]:
move.move()
# Remove processed moves from the queue
self.leftover = flush_count - move_count
del queue[:move_count]
def add_move(self, move):
self.queue.append(move)
if len(self.queue) == 1:
return
move.calc_junction(self.queue[-2])
self.junction_flush -= move.min_move_t
if self.junction_flush <= 0.:
# There are enough queued moves to return to zero velocity
# from the first move's maximum possible velocity, so at
# least one move can be flushed.
self.flush(lazy=True)
STALL_TIME = 0.100
# Main code to track events (and their timing) on the printer toolhead
class ToolHead:
def __init__(self, printer, config):
self.printer = printer
self.reactor = printer.reactor
self.extruder = printer.objects.get('extruder')
if self.extruder is None:
self.extruder = extruder.DummyExtruder()
kintypes = {'cartesian': cartesian.CartKinematics,
'delta': delta.DeltaKinematics}
self.kin = config.getchoice('kinematics', kintypes)(printer, config)
self.max_speed = config.getfloat('max_velocity')
self.max_accel = config.getfloat('max_accel')
self.max_accel_to_decel = config.getfloat('max_accel_to_decel'
, self.max_accel * 0.5)
self.junction_deviation = config.getfloat('junction_deviation', 0.02)
self.move_queue = MoveQueue(self.extruder.lookahead)
self.commanded_pos = [0., 0., 0., 0.]
# Print time tracking
self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
self.move_flush_time = config.getfloat('move_flush_time', 0.050)
self.print_time = 0.
self.need_check_stall = -1.
self.print_time_stall = 0
self.flush_timer = self.reactor.register_timer(self._flush_handler)
# Motor off tracking
self.motor_off_time = config.getfloat('motor_off_time', 60.000)
self.motor_off_timer = self.reactor.register_timer(
self._motor_off_handler)
def build_config(self):
# Determine the maximum velocity a cartesian axis could have
# before cornering. The 8. was determined experimentally.
xy_halt = math.sqrt(8. * self.junction_deviation * self.max_accel)
self.kin.set_max_jerk(xy_halt, self.max_speed, self.max_accel)
self.extruder.set_max_jerk(xy_halt, self.max_speed, self.max_accel)
self.kin.build_config()
# Print time tracking
def update_move_time(self, movetime):
self.print_time += movetime
flush_to_time = self.print_time - self.move_flush_time
self.printer.mcu.flush_moves(flush_to_time)
def get_next_move_time(self):
if not self.print_time:
self.print_time = self.buffer_time_low + STALL_TIME
curtime = self.reactor.monotonic()
self.printer.mcu.set_print_start_time(curtime)
self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
self._reset_motor_off()
return self.print_time
def get_last_move_time(self):
self.move_queue.flush()
return self.get_next_move_time()
def reset_print_time(self):
self.move_queue.flush()
self.printer.mcu.flush_moves(self.print_time)
self.print_time = 0.
self.need_check_stall = -1.
self._reset_motor_off()
def _check_stall(self):
eventtime = self.reactor.monotonic()
if not self.print_time:
# Building initial queue - make sure to flush on idle input
self.reactor.update_timer(self.flush_timer, eventtime + 0.100)
return
# Check if there are lots of queued moves and stall if so
while 1:
buffer_time = self.printer.mcu.get_print_buffer_time(
eventtime, self.print_time)
stall_time = buffer_time - self.buffer_time_high
if stall_time <= 0.:
break
eventtime = self.reactor.pause(eventtime + stall_time)
if not self.print_time:
return
self.need_check_stall = self.print_time - stall_time + 0.100
def _flush_handler(self, eventtime):
try:
if not self.print_time:
# Input idled before filling lookahead queue - flush it
self.move_queue.flush()
if not self.print_time:
return self.reactor.NEVER
print_time = self.print_time
buffer_time = self.printer.mcu.get_print_buffer_time(
eventtime, print_time)
if buffer_time > self.buffer_time_low:
# Running normally - reschedule check
return eventtime + buffer_time - self.buffer_time_low
# Under ran low buffer mark - flush lookahead queue
self.move_queue.flush()
if print_time != self.print_time:
self.print_time_stall += 1
self.dwell(self.buffer_time_low + STALL_TIME)
return self.reactor.NOW
self.reset_print_time()
except:
logging.exception("Exception in flush_handler")
self.force_shutdown()
return self.reactor.NEVER
# Motor off timer
def _reset_motor_off(self):
if not self.print_time:
waketime = self.reactor.monotonic() + self.motor_off_time
else:
waketime = self.reactor.NEVER
self.reactor.update_timer(self.motor_off_timer, waketime)
def _motor_off_handler(self, eventtime):
try:
self.motor_off()
self.reset_print_time()
except:
logging.exception("Exception in motor_off_handler")
self.force_shutdown()
return self.reactor.NEVER
# Movement commands
def get_position(self):
return list(self.commanded_pos)
def set_position(self, newpos):
self.move_queue.flush()
self.commanded_pos[:] = newpos
self.kin.set_position(newpos)
def move(self, newpos, speed):
speed = min(speed, self.max_speed)
move = Move(self, self.commanded_pos, newpos, speed)
if not move.move_d:
return
if move.is_kinematic_move:
self.kin.check_move(move)
if move.axes_d[3]:
self.extruder.check_move(move)
self.commanded_pos[:] = newpos
self.move_queue.add_move(move)
if self.print_time > self.need_check_stall:
self._check_stall()
def home(self, homing_state):
self.kin.home(homing_state)
def dwell(self, delay):
self.get_last_move_time()
self.update_move_time(delay)
self._check_stall()
def motor_off(self):
self.dwell(STALL_TIME)
last_move_time = self.get_last_move_time()
self.kin.motor_off(last_move_time)
self.extruder.motor_off(last_move_time)
self.dwell(STALL_TIME)
logging.debug('; Max time of %f' % (last_move_time,))
def wait_moves(self):
self.move_queue.flush()
eventtime = self.reactor.monotonic()
while self.print_time:
eventtime = self.reactor.pause(eventtime + 0.100)
def query_endstops(self):
last_move_time = self.get_last_move_time()
return self.kin.query_endstops(last_move_time)
# Misc commands
def stats(self, eventtime):
buffer_time = 0.
if self.print_time:
buffer_time = self.printer.mcu.get_print_buffer_time(
eventtime, self.print_time)
return "print_time=%.3f buffer_time=%.3f print_time_stall=%d" % (
self.print_time, buffer_time, self.print_time_stall)
def force_shutdown(self):
self.printer.mcu.force_shutdown()
self.move_queue.reset()
self.reset_print_time()