klipper/klippy/chelper/itersolve.c

239 lines
7.9 KiB
C

// Iterative solver for kinematic moves
//
// Copyright (C) 2018 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <math.h> // sqrt
#include <stdlib.h> // malloc
#include <string.h> // memset
#include "compiler.h" // __visible
#include "itersolve.h" // struct coord
#include "pyhelper.h" // errorf
#include "stepcompress.h" // queue_append_start
/****************************************************************
* Kinematic moves
****************************************************************/
struct move * __visible
move_alloc(void)
{
struct move *m = malloc(sizeof(*m));
memset(m, 0, sizeof(*m));
return m;
}
// Populate a 'struct move' with a velocity trapezoid
void __visible
move_fill(struct move *m, double print_time
, double accel_t, double cruise_t, double decel_t
, double start_pos_x, double start_pos_y, double start_pos_z
, double axes_d_x, double axes_d_y, double axes_d_z
, double start_v, double cruise_v, double accel)
{
// Setup velocity trapezoid
m->print_time = print_time;
m->move_t = accel_t + cruise_t + decel_t;
m->accel_t = accel_t;
m->cruise_t = cruise_t;
m->cruise_start_d = accel_t * .5 * (cruise_v + start_v);
m->decel_start_d = m->cruise_start_d + cruise_t * cruise_v;
// Setup for accel/cruise/decel phases
m->cruise_v = cruise_v;
m->accel.c1 = start_v;
m->accel.c2 = .5 * accel;
m->decel.c1 = cruise_v;
m->decel.c2 = -m->accel.c2;
// Setup for move_get_coord()
m->start_pos.x = start_pos_x;
m->start_pos.y = start_pos_y;
m->start_pos.z = start_pos_z;
double inv_move_d = 1. / sqrt(axes_d_x*axes_d_x + axes_d_y*axes_d_y
+ axes_d_z*axes_d_z);
m->axes_r.x = axes_d_x * inv_move_d;
m->axes_r.y = axes_d_y * inv_move_d;
m->axes_r.z = axes_d_z * inv_move_d;
}
// Find the distance travel during acceleration/deceleration
static inline double
move_eval_accel(struct move_accel *ma, double move_time)
{
return (ma->c1 + ma->c2 * move_time) * move_time;
}
// Return the distance moved given a time in a move
inline double
move_get_distance(struct move *m, double move_time)
{
if (unlikely(move_time < m->accel_t))
// Acceleration phase of move
return move_eval_accel(&m->accel, move_time);
move_time -= m->accel_t;
if (likely(move_time <= m->cruise_t))
// Cruising phase
return m->cruise_start_d + m->cruise_v * move_time;
// Deceleration phase
move_time -= m->cruise_t;
return m->decel_start_d + move_eval_accel(&m->decel, move_time);
}
// Return the XYZ coordinates given a time in a move
inline struct coord
move_get_coord(struct move *m, double move_time)
{
double move_dist = move_get_distance(m, move_time);
return (struct coord) {
.x = m->start_pos.x + m->axes_r.x * move_dist,
.y = m->start_pos.y + m->axes_r.y * move_dist,
.z = m->start_pos.z + m->axes_r.z * move_dist };
}
/****************************************************************
* Iterative solver
****************************************************************/
struct timepos {
double time, position;
};
// Find step using "false position" method
static struct timepos
itersolve_find_step(struct stepper_kinematics *sk, struct move *m
, struct timepos low, struct timepos high
, double target)
{
sk_callback calc_position = sk->calc_position;
struct timepos best_guess = high;
low.position -= target;
high.position -= target;
if (!high.position)
// The high range was a perfect guess for the next step
return best_guess;
int high_sign = signbit(high.position);
if (high_sign == signbit(low.position))
// The target is not in the low/high range - return low range
return (struct timepos){ low.time, target };
for (;;) {
double guess_time = ((low.time*high.position - high.time*low.position)
/ (high.position - low.position));
if (fabs(guess_time - best_guess.time) <= .000000001)
break;
best_guess.time = guess_time;
best_guess.position = calc_position(sk, m, guess_time);
double guess_position = best_guess.position - target;
int guess_sign = signbit(guess_position);
if (guess_sign == high_sign) {
high.time = guess_time;
high.position = guess_position;
} else {
low.time = guess_time;
low.position = guess_position;
}
}
return best_guess;
}
// Generate step times for a stepper during a move
int32_t __visible
itersolve_gen_steps(struct stepper_kinematics *sk, struct move *m)
{
struct stepcompress *sc = sk->sc;
sk_callback calc_position = sk->calc_position;
double half_step = .5 * sk->step_dist;
double mcu_freq = stepcompress_get_mcu_freq(sc);
struct timepos last = { 0., sk->commanded_pos }, low = last, high = last;
double seek_time_delta = 0.000100;
int sdir = stepcompress_get_step_dir(sc);
struct queue_append qa = queue_append_start(sc, m->print_time, .5);
for (;;) {
// Determine if next step is in forward or reverse direction
double dist = high.position - last.position;
if (fabs(dist) < half_step) {
seek_new_high_range:
if (high.time >= m->move_t)
// At end of move
break;
// Need to increase next step search range
low = high;
high.time = last.time + seek_time_delta;
seek_time_delta += seek_time_delta;
if (high.time > m->move_t)
high.time = m->move_t;
high.position = calc_position(sk, m, high.time);
continue;
}
int next_sdir = dist > 0.;
if (unlikely(next_sdir != sdir)) {
// Direction change
if (fabs(dist) < half_step + .000000001)
// Only change direction if going past midway point
goto seek_new_high_range;
if (last.time >= low.time && high.time > last.time) {
// Must seek new low range to avoid re-finding previous time
high.time = (last.time + high.time) * .5;
high.position = calc_position(sk, m, high.time);
continue;
}
int ret = queue_append_set_next_step_dir(&qa, next_sdir);
if (ret)
return ret;
sdir = next_sdir;
}
// Find step
double target = last.position + (sdir ? half_step : -half_step);
struct timepos next = itersolve_find_step(sk, m, low, high, target);
// Add step at given time
int ret = queue_append(&qa, next.time * mcu_freq);
if (ret)
return ret;
seek_time_delta = next.time - last.time;
if (seek_time_delta < .000000001)
seek_time_delta = .000000001;
last.position = target + (sdir ? half_step : -half_step);
last.time = next.time;
low = next;
if (last.time >= high.time)
// The high range is no longer valid - recalculate it
goto seek_new_high_range;
}
queue_append_finish(qa);
sk->commanded_pos = last.position;
return 0;
}
void __visible
itersolve_set_stepcompress(struct stepper_kinematics *sk
, struct stepcompress *sc, double step_dist)
{
sk->sc = sc;
sk->step_dist = step_dist;
}
void __visible
itersolve_set_position(struct stepper_kinematics *sk
, double x, double y, double z)
{
struct move m;
memset(&m, 0, sizeof(m));
move_fill(&m, 0., 0., 1., 0., x, y, z, 0., 1., 0., 0., 1., 0.);
sk->commanded_pos = sk->calc_position(sk, &m, 0.);
}
void __visible
itersolve_set_commanded_pos(struct stepper_kinematics *sk, double pos)
{
sk->commanded_pos = pos;
}
double __visible
itersolve_get_commanded_pos(struct stepper_kinematics *sk)
{
return sk->commanded_pos;
}