klipper/klippy/extras/mpu9250.py

217 lines
9.4 KiB
Python

# Support for reading acceleration data from an mpu9250 chip
#
# Copyright (C) 2022 Harry Beyel <harry3b9@gmail.com>
# Copyright (C) 2020-2021 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
from . import bus, adxl345, bulk_sensor
MPU9250_ADDR = 0x68
MPU_DEV_IDS = {
0x74: "mpu-9515",
0x73: "mpu-9255",
0x71: "mpu-9250",
0x70: "mpu-6500",
0x68: "mpu-6050",
#everything above are normal MPU IDs
0x75: "mpu-unknown (DEFECTIVE! USE WITH CAUTION!)",
0x69: "mpu-unknown (DEFECTIVE! USE WITH CAUTION!)",
}
# MPU9250 registers
REG_DEVID = 0x75
REG_FIFO_EN = 0x23
REG_SMPLRT_DIV = 0x19
REG_CONFIG = 0x1A
REG_ACCEL_CONFIG = 0x1C
REG_ACCEL_CONFIG2 = 0x1D
REG_USER_CTRL = 0x6A
REG_PWR_MGMT_1 = 0x6B
REG_PWR_MGMT_2 = 0x6C
SAMPLE_RATE_DIVS = { 4000:0x00 }
SET_CONFIG = 0x01 # FIFO mode 'stream' style
SET_ACCEL_CONFIG = 0x10 # 8g full scale
SET_ACCEL_CONFIG2 = 0x08 # 1046Hz BW, 0.503ms delay 4kHz sample rate
SET_PWR_MGMT_1_WAKE = 0x00
SET_PWR_MGMT_1_SLEEP= 0x40
SET_PWR_MGMT_2_ACCEL_ON = 0x07
SET_PWR_MGMT_2_OFF = 0x3F
FREEFALL_ACCEL = 9.80665 * 1000.
# SCALE = 1/4096 g/LSB @8g scale * Earth gravity in mm/s**2
SCALE = 0.000244140625 * FREEFALL_ACCEL
FIFO_SIZE = 512
MIN_MSG_TIME = 0.100
BYTES_PER_SAMPLE = 6
SAMPLES_PER_BLOCK = 8
BATCH_UPDATES = 0.100
# Printer class that controls MPU9250 chip
class MPU9250:
def __init__(self, config):
self.printer = config.get_printer()
adxl345.AccelCommandHelper(config, self)
self.axes_map = adxl345.read_axes_map(config)
self.data_rate = config.getint('rate', 4000)
if self.data_rate not in SAMPLE_RATE_DIVS:
raise config.error("Invalid rate parameter: %d" % (self.data_rate,))
# Setup mcu sensor_mpu9250 bulk query code
self.i2c = bus.MCU_I2C_from_config(config,
default_addr=MPU9250_ADDR,
default_speed=400000)
self.mcu = mcu = self.i2c.get_mcu()
self.oid = oid = mcu.create_oid()
self.query_mpu9250_cmd = self.query_mpu9250_end_cmd = None
self.query_mpu9250_status_cmd = None
mcu.register_config_callback(self._build_config)
self.bulk_queue = bulk_sensor.BulkDataQueue(mcu, "mpu9250_data", oid)
# Clock tracking
chip_smooth = self.data_rate * BATCH_UPDATES * 2
self.clock_sync = bulk_sensor.ClockSyncRegression(mcu, chip_smooth)
self.clock_updater = bulk_sensor.ChipClockUpdater(self.clock_sync,
BYTES_PER_SAMPLE)
self.last_error_count = 0
# Process messages in batches
self.batch_bulk = bulk_sensor.BatchBulkHelper(
self.printer, self._process_batch,
self._start_measurements, self._finish_measurements, BATCH_UPDATES)
self.name = config.get_name().split()[-1]
hdr = ('time', 'x_acceleration', 'y_acceleration', 'z_acceleration')
self.batch_bulk.add_mux_endpoint("mpu9250/dump_mpu9250", "sensor",
self.name, {'header': hdr})
def _build_config(self):
cmdqueue = self.i2c.get_command_queue()
self.mcu.add_config_cmd("config_mpu9250 oid=%d i2c_oid=%d"
% (self.oid, self.i2c.get_oid()))
self.mcu.add_config_cmd("query_mpu9250 oid=%d clock=0 rest_ticks=0"
% (self.oid,), on_restart=True)
self.query_mpu9250_cmd = self.mcu.lookup_command(
"query_mpu9250 oid=%c clock=%u rest_ticks=%u", cq=cmdqueue)
self.query_mpu9250_end_cmd = self.mcu.lookup_query_command(
"query_mpu9250 oid=%c clock=%u rest_ticks=%u",
"mpu9250_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
" buffered=%c fifo=%u limit_count=%hu", oid=self.oid, cq=cmdqueue)
self.query_mpu9250_status_cmd = self.mcu.lookup_query_command(
"query_mpu9250_status oid=%c",
"mpu9250_status oid=%c clock=%u query_ticks=%u next_sequence=%hu"
" buffered=%c fifo=%u limit_count=%hu", oid=self.oid, cq=cmdqueue)
def read_reg(self, reg):
params = self.i2c.i2c_read([reg], 1)
return bytearray(params['response'])[0]
def set_reg(self, reg, val, minclock=0):
self.i2c.i2c_write([reg, val & 0xFF], minclock=minclock)
def start_internal_client(self):
aqh = adxl345.AccelQueryHelper(self.printer)
self.batch_bulk.add_client(aqh.handle_batch)
return aqh
# Measurement decoding
def _extract_samples(self, raw_samples):
# Load variables to optimize inner loop below
(x_pos, x_scale), (y_pos, y_scale), (z_pos, z_scale) = self.axes_map
last_sequence = self.clock_updater.get_last_sequence()
time_base, chip_base, inv_freq = self.clock_sync.get_time_translation()
# Process every message in raw_samples
count = seq = 0
samples = [None] * (len(raw_samples) * SAMPLES_PER_BLOCK)
for params in raw_samples:
seq_diff = (params['sequence'] - last_sequence) & 0xffff
seq_diff -= (seq_diff & 0x8000) << 1
seq = last_sequence + seq_diff
d = bytearray(params['data'])
msg_cdiff = seq * SAMPLES_PER_BLOCK - chip_base
for i in range(len(d) // BYTES_PER_SAMPLE):
d_xyz = d[i*BYTES_PER_SAMPLE:(i+1)*BYTES_PER_SAMPLE]
xhigh, xlow, yhigh, ylow, zhigh, zlow = d_xyz
# Merge and perform twos-complement
rx = ((xhigh << 8) | xlow) - ((xhigh & 0x80) << 9)
ry = ((yhigh << 8) | ylow) - ((yhigh & 0x80) << 9)
rz = ((zhigh << 8) | zlow) - ((zhigh & 0x80) << 9)
raw_xyz = (rx, ry, rz)
x = round(raw_xyz[x_pos] * x_scale, 6)
y = round(raw_xyz[y_pos] * y_scale, 6)
z = round(raw_xyz[z_pos] * z_scale, 6)
ptime = round(time_base + (msg_cdiff + i) * inv_freq, 6)
samples[count] = (ptime, x, y, z)
count += 1
self.clock_sync.set_last_chip_clock(seq * SAMPLES_PER_BLOCK + i)
del samples[count:]
return samples
def _update_clock(self, minclock=0):
params = self.query_mpu9250_status_cmd.send([self.oid],
minclock=minclock)
self.clock_updater.update_clock(params)
# Start, stop, and process message batches
def _start_measurements(self):
# In case of miswiring, testing MPU9250 device ID prevents treating
# noise or wrong signal as a correctly initialized device
dev_id = self.read_reg(REG_DEVID)
if dev_id not in MPU_DEV_IDS.keys():
raise self.printer.command_error(
"Invalid mpu id (got %x).\n"
"This is generally indicative of connection problems\n"
"(e.g. faulty wiring) or a faulty chip."
% (dev_id))
else:
logging.info("Found %s with id %x"% (MPU_DEV_IDS[dev_id], dev_id))
# Setup chip in requested query rate
self.set_reg(REG_PWR_MGMT_1, SET_PWR_MGMT_1_WAKE)
self.set_reg(REG_PWR_MGMT_2, SET_PWR_MGMT_2_ACCEL_ON)
# Add 20ms pause for accelerometer chip wake up
self.read_reg(REG_DEVID) # Dummy read to ensure queues flushed
systime = self.printer.get_reactor().monotonic()
next_time = self.mcu.estimated_print_time(systime) + 0.020
self.set_reg(REG_SMPLRT_DIV, SAMPLE_RATE_DIVS[self.data_rate],
minclock=self.mcu.print_time_to_clock(next_time))
self.set_reg(REG_CONFIG, SET_CONFIG)
self.set_reg(REG_ACCEL_CONFIG, SET_ACCEL_CONFIG)
self.set_reg(REG_ACCEL_CONFIG2, SET_ACCEL_CONFIG2)
# Start bulk reading
self.bulk_queue.clear_samples()
systime = self.printer.get_reactor().monotonic()
print_time = self.mcu.estimated_print_time(systime) + MIN_MSG_TIME
reqclock = self.mcu.print_time_to_clock(print_time)
rest_ticks = self.mcu.seconds_to_clock(4. / self.data_rate)
self.query_mpu9250_cmd.send([self.oid, reqclock, rest_ticks],
reqclock=reqclock)
logging.info("MPU9250 starting '%s' measurements", self.name)
# Initialize clock tracking
self.clock_updater.note_start(reqclock)
self._update_clock(minclock=reqclock)
self.clock_updater.clear_duration_filter()
self.last_error_count = 0
def _finish_measurements(self):
# Halt bulk reading
params = self.query_mpu9250_end_cmd.send([self.oid, 0, 0])
self.bulk_queue.clear_samples()
logging.info("MPU9250 finished '%s' measurements", self.name)
self.set_reg(REG_PWR_MGMT_1, SET_PWR_MGMT_1_SLEEP)
self.set_reg(REG_PWR_MGMT_2, SET_PWR_MGMT_2_OFF)
def _process_batch(self, eventtime):
self._update_clock()
raw_samples = self.bulk_queue.pull_samples()
if not raw_samples:
return {}
samples = self._extract_samples(raw_samples)
if not samples:
return {}
return {'data': samples, 'errors': self.last_error_count,
'overflows': self.clock_updater.get_last_limit_count()}
def load_config(config):
return MPU9250(config)
def load_config_prefix(config):
return MPU9250(config)