klipper/klippy/extras/bme280.py

481 lines
19 KiB
Python

# Support for i2c based temperature sensors
#
# Copyright (C) 2020 Eric Callahan <arksine.code@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
from . import bus
REPORT_TIME = .8
BME280_CHIP_ADDR = 0x76
BME280_REGS = {
'RESET': 0xE0, 'CTRL_HUM': 0xF2,
'STATUS': 0xF3, 'CTRL_MEAS': 0xF4, 'CONFIG': 0xF5,
'PRESSURE_MSB': 0xF7, 'PRESSURE_LSB': 0xF8, 'PRESSURE_XLSB': 0xF9,
'TEMP_MSB': 0xFA, 'TEMP_LSB': 0xFB, 'TEMP_XLSB': 0xFC,
'HUM_MSB': 0xFD, 'HUM_LSB': 0xFE, 'CAL_1': 0x88, 'CAL_2': 0xE1
}
BME680_REGS = {
'RESET': 0xE0, 'CTRL_HUM': 0x72, 'CTRL_GAS_1': 0x71, 'CTRL_GAS_0': 0x70,
'GAS_WAIT_0': 0x64, 'RES_HEAT_0': 0x5A, 'IDAC_HEAT_0': 0x50,
'STATUS': 0x73, 'EAS_STATUS_0': 0x1D, 'CTRL_MEAS': 0x74, 'CONFIG': 0x75,
'GAS_R_LSB': 0x2B, 'GAS_R_MSB': 0x2A,
'PRESSURE_MSB': 0x1F, 'PRESSURE_LSB': 0x20, 'PRESSURE_XLSB': 0x21,
'TEMP_MSB': 0x22, 'TEMP_LSB': 0x23, 'TEMP_XLSB': 0x24,
'HUM_MSB': 0x25, 'HUM_LSB': 0x26, 'CAL_1': 0x88, 'CAL_2': 0xE1,
'RES_HEAT_VAL': 0x00, 'RES_HEAT_RANGE': 0x02, 'RANGE_SWITCHING_ERROR': 0x04
}
BME680_GAS_CONSTANTS = {
0: (1., 8000000.),
1: (1., 4000000.),
2: (1., 2000000.),
3: (1., 1000000.),
4: (1., 499500.4995),
5: (0.99, 248262.1648),
6: (1., 125000.),
7: (0.992, 63004.03226),
8: (1., 31281.28128),
9: (1., 15625.),
10: (0.998, 7812.5),
11: (0.995, 3906.25),
12: (1., 1953.125),
13: (0.99, 976.5625),
14: (1., 488.28125),
15: (1., 244.140625)
}
STATUS_MEASURING = 1 << 3
STATUS_IM_UPDATE = 1
MODE = 1
RUN_GAS = 1 << 4
NB_CONV_0 = 0
EAS_NEW_DATA = 1 << 7
GAS_DONE = 1 << 6
MEASURE_DONE = 1 << 5
RESET_CHIP_VALUE = 0xB6
BME_CHIPS = {
0x58: 'BMP280', 0x60: 'BME280', 0x61: 'BME680'
}
BME_CHIP_ID_REG = 0xD0
def get_twos_complement(val, bit_size):
if val & (1 << (bit_size - 1)):
val -= (1 << bit_size)
return val
def get_unsigned_short(bits):
return bits[1] << 8 | bits[0]
def get_signed_short(bits):
val = get_unsigned_short(bits)
return get_twos_complement(val, 16)
def get_signed_byte(bits):
return get_twos_complement(bits, 8)
class BME280:
def __init__(self, config):
self.printer = config.get_printer()
self.name = config.get_name().split()[-1]
self.reactor = self.printer.get_reactor()
self.i2c = bus.MCU_I2C_from_config(
config, default_addr=BME280_CHIP_ADDR, default_speed=100000)
self.mcu = self.i2c.get_mcu()
self.iir_filter = config.getint('bme280_iir_filter', 1)
self.os_temp = config.getint('bme280_oversample_temp', 2)
self.os_hum = config.getint('bme280_oversample_hum', 2)
self.os_pres = config.getint('bme280_oversample_pressure', 2)
self.gas_heat_temp = config.getint('bme280_gas_target_temp', 320)
self.gas_heat_duration = config.getint('bme280_gas_heat_duration', 150)
logging.info("BMxx80: Oversampling: Temp %dx Humid %dx Pressure %dx" % (
pow(2, self.os_temp - 1), pow(2, self.os_hum - 1),
pow(2, self.os_pres - 1)))
logging.info("BMxx80: IIR: %dx" % (pow(2, self.iir_filter) - 1))
self.temp = self.pressure = self.humidity = self.gas = self.t_fine = 0.
self.min_temp = self.max_temp = self.range_switching_error = 0.
self.max_sample_time = None
self.dig = self.sample_timer = None
self.chip_type = 'BMP280'
self.chip_registers = BME280_REGS
self.printer.add_object("bme280 " + self.name, self)
if self.printer.get_start_args().get('debugoutput') is not None:
return
self.printer.register_event_handler("klippy:connect",
self.handle_connect)
def handle_connect(self):
self._init_bmxx80()
self.reactor.update_timer(self.sample_timer, self.reactor.NOW)
def setup_minmax(self, min_temp, max_temp):
self.min_temp = min_temp
self.max_temp = max_temp
def setup_callback(self, cb):
self._callback = cb
def get_report_time_delta(self):
return REPORT_TIME
def _init_bmxx80(self):
def read_calibration_data_bmp280(calib_data_1):
dig = {}
dig['T1'] = get_unsigned_short(calib_data_1[0:2])
dig['T2'] = get_signed_short(calib_data_1[2:4])
dig['T3'] = get_signed_short(calib_data_1[4:6])
dig['P1'] = get_unsigned_short(calib_data_1[6:8])
dig['P2'] = get_signed_short(calib_data_1[8:10])
dig['P3'] = get_signed_short(calib_data_1[10:12])
dig['P4'] = get_signed_short(calib_data_1[12:14])
dig['P5'] = get_signed_short(calib_data_1[14:16])
dig['P6'] = get_signed_short(calib_data_1[16:18])
dig['P7'] = get_signed_short(calib_data_1[18:20])
dig['P8'] = get_signed_short(calib_data_1[20:22])
dig['P9'] = get_signed_short(calib_data_1[22:24])
return dig
def read_calibration_data_bme280(calib_data_1, calib_data_2):
dig = read_calibration_data_bmp280(calib_data_1)
dig['H1'] = calib_data_1[25] & 0xFF
dig['H2'] = get_signed_short(calib_data_2[0:2])
dig['H3'] = calib_data_2[2] & 0xFF
dig['H4'] = get_twos_complement(
(calib_data_2[3] << 4) | (calib_data_2[4] & 0x0F), 12)
dig['H5'] = get_twos_complement(
(calib_data_2[5] << 4) | ((calib_data_2[4] & 0xF0) >> 4), 12)
dig['H6'] = get_twos_complement(calib_data_2[6], 8)
return dig
def read_calibration_data_bme680(calib_data_1, calib_data_2):
dig = {}
dig['T1'] = get_unsigned_short(calib_data_2[8:10])
dig['T2'] = get_signed_short(calib_data_1[2:4])
dig['T3'] = get_signed_byte(calib_data_1[4])
dig['P1'] = get_unsigned_short(calib_data_1[6:8])
dig['P2'] = get_signed_short(calib_data_1[8:10])
dig['P3'] = calib_data_1[10]
dig['P4'] = get_signed_short(calib_data_1[12:14])
dig['P5'] = get_signed_short(calib_data_1[14:16])
dig['P6'] = get_signed_byte(calib_data_1[17])
dig['P7'] = get_signed_byte(calib_data_1[16])
dig['P8'] = get_signed_short(calib_data_1[20:22])
dig['P9'] = get_signed_short(calib_data_1[22:24])
dig['P10'] = calib_data_1[24]
dig['H1'] = get_twos_complement(
(calib_data_2[2] << 4) | (calib_data_2[1] & 0x0F), 12)
dig['H2'] = get_twos_complement(
(calib_data_2[0] << 4) | ((calib_data_2[1] & 0xF0) >> 4), 12)
dig['H3'] = get_signed_byte(calib_data_2[3])
dig['H4'] = get_signed_byte(calib_data_2[4])
dig['H5'] = get_signed_byte(calib_data_2[5])
dig['H6'] = calib_data_2[6]
dig['H7'] = get_signed_byte(calib_data_2[7])
dig['G1'] = get_signed_byte(calib_data_2[12])
dig['G2'] = get_signed_short(calib_data_2[10:12])
dig['G3'] = get_signed_byte(calib_data_2[13])
return dig
chip_id = self.read_id()
if chip_id not in BME_CHIPS.keys():
logging.info("bme280: Unknown Chip ID received %#x" % chip_id)
else:
self.chip_type = BME_CHIPS[chip_id]
logging.info("bme280: Found Chip %s at %#x" % (
self.chip_type, self.i2c.i2c_address))
# Reset chip
self.write_register('RESET', [RESET_CHIP_VALUE])
self.reactor.pause(self.reactor.monotonic() + .5)
# Make sure non-volatile memory has been copied to registers
status = self.read_register('STATUS', 1)[0]
while status & STATUS_IM_UPDATE:
self.reactor.pause(self.reactor.monotonic() + .01)
status = self.read_register('STATUS', 1)[0]
if self.chip_type == 'BME680':
self.max_sample_time = 0.5
self.sample_timer = self.reactor.register_timer(self._sample_bme680)
self.chip_registers = BME680_REGS
else:
self.max_sample_time = \
(1.25 + (2.3 * self.os_temp) + ((2.3 * self.os_pres) + .575)
+ ((2.3 * self.os_hum) + .575)) / 1000
self.sample_timer = self.reactor.register_timer(self._sample_bme280)
self.chip_registers = BME280_REGS
if self.chip_type in ('BME680', 'BME280'):
self.write_register('CONFIG', (self.iir_filter & 0x07) << 2)
# Read out and calculate the trimming parameters
cal_1 = self.read_register('CAL_1', 26)
cal_2 = self.read_register('CAL_2', 16)
if self.chip_type == 'BME280':
self.dig = read_calibration_data_bme280(cal_1, cal_2)
elif self.chip_type == 'BMP280':
self.dig = read_calibration_data_bmp280(cal_1)
elif self.chip_type == 'BME680':
self.dig = read_calibration_data_bme680(cal_1, cal_2)
def _sample_bme280(self, eventtime):
# Enter forced mode
if self.chip_type == 'BME280':
self.write_register('CTRL_HUM', self.os_hum)
meas = self.os_temp << 5 | self.os_pres << 2 | MODE
self.write_register('CTRL_MEAS', meas)
try:
# wait until results are ready
status = self.read_register('STATUS', 1)[0]
while status & STATUS_MEASURING:
self.reactor.pause(
self.reactor.monotonic() + self.max_sample_time)
status = self.read_register('STATUS', 1)[0]
if self.chip_type == 'BME280':
data = self.read_register('PRESSURE_MSB', 8)
elif self.chip_type == 'BMP280':
data = self.read_register('PRESSURE_MSB', 6)
else:
return self.reactor.NEVER
except Exception:
logging.exception("BME280: Error reading data")
self.temp = self.pressure = self.humidity = .0
return self.reactor.NEVER
temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4)
self.temp = self._compensate_temp(temp_raw)
pressure_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4)
self.pressure = self._compensate_pressure_bme280(pressure_raw) / 100.
if self.chip_type == 'BME280':
humid_raw = (data[6] << 8) | data[7]
self.humidity = self._compensate_humidity_bme280(humid_raw)
if self.temp < self.min_temp or self.temp > self.max_temp:
self.printer.invoke_shutdown(
"BME280 temperature %0.1f outside range of %0.1f:%.01f"
% (self.temp, self.min_temp, self.max_temp))
measured_time = self.reactor.monotonic()
self._callback(self.mcu.estimated_print_time(measured_time), self.temp)
return measured_time + REPORT_TIME
def _sample_bme680(self, eventtime):
self.write_register('CTRL_HUM', self.os_hum & 0x07)
meas = self.os_temp << 5 | self.os_pres << 2
self.write_register('CTRL_MEAS', [meas])
gas_wait_0 = self._calculate_gas_heater_duration(self.gas_heat_duration)
self.write_register('GAS_WAIT_0', [gas_wait_0])
res_heat_0 = self._calculate_gas_heater_resistance(self.gas_heat_temp)
self.write_register('RES_HEAT_0', [res_heat_0])
gas_config = RUN_GAS | NB_CONV_0
self.write_register('CTRL_GAS_1', [gas_config])
def data_ready(stat):
new_data = (stat & EAS_NEW_DATA)
gas_done = not (stat & GAS_DONE)
meas_done = not (stat & MEASURE_DONE)
return new_data and gas_done and meas_done
# Enter forced mode
meas = meas | MODE
self.write_register('CTRL_MEAS', meas)
try:
# wait until results are ready
status = self.read_register('EAS_STATUS_0', 1)[0]
while not data_ready(status):
self.reactor.pause(
self.reactor.monotonic() + self.max_sample_time)
status = self.read_register('EAS_STATUS_0', 1)[0]
data = self.read_register('PRESSURE_MSB', 8)
gas_data = self.read_register('GAS_R_MSB', 2)
except Exception:
logging.exception("BME680: Error reading data")
self.temp = self.pressure = self.humidity = self.gas = .0
return self.reactor.NEVER
temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4)
if temp_raw != 0x80000:
self.temp = self._compensate_temp(temp_raw)
pressure_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4)
if pressure_raw != 0x80000:
self.pressure = self._compensate_pressure_bme680(
pressure_raw) / 100.
humid_raw = (data[6] << 8) | data[7]
self.humidity = self._compensate_humidity_bme680(humid_raw)
gas_valid = ((gas_data[1] & 0x20) == 0x20)
if gas_valid:
gas_heater_stable = ((gas_data[1] & 0x10) == 0x10)
if not gas_heater_stable:
logging.warning("BME680: Gas heater didn't reach target")
gas_raw = (gas_data[0] << 2) | ((gas_data[1] & 0xC0) >> 6)
gas_range = (gas_data[1] & 0x0F)
self.gas = self._compensate_gas(gas_raw, gas_range)
if self.temp < self.min_temp or self.temp > self.max_temp:
self.printer.invoke_shutdown(
"BME680 temperature %0.1f outside range of %0.1f:%.01f"
% (self.temp, self.min_temp, self.max_temp))
measured_time = self.reactor.monotonic()
self._callback(self.mcu.estimated_print_time(measured_time), self.temp)
return measured_time + REPORT_TIME
def _compensate_temp(self, raw_temp):
dig = self.dig
var1 = ((raw_temp / 16384. - (dig['T1'] / 1024.)) * dig['T2'])
var2 = (
((raw_temp / 131072.) - (dig['T1'] / 8192.)) *
((raw_temp / 131072.) - (dig['T1'] / 8192.)) * dig['T3'])
self.t_fine = var1 + var2
return self.t_fine / 5120.0
def _compensate_pressure_bme280(self, raw_pressure):
dig = self.dig
t_fine = self.t_fine
var1 = t_fine / 2. - 64000.
var2 = var1 * var1 * dig['P6'] / 32768.
var2 = var2 + var1 * dig['P5'] * 2.
var2 = var2 / 4. + (dig['P4'] * 65536.)
var1 = (dig['P3'] * var1 * var1 / 524288. + dig['P2'] * var1) / 524288.
var1 = (1. + var1 / 32768.) * dig['P1']
if var1 == 0:
return 0.
else:
pressure = 1048576.0 - raw_pressure
pressure = ((pressure - var2 / 4096.) * 6250.) / var1
var1 = dig['P9'] * pressure * pressure / 2147483648.
var2 = pressure * dig['P8'] / 32768.
return pressure + (var1 + var2 + dig['P7']) / 16.
def _compensate_pressure_bme680(self, raw_pressure):
dig = self.dig
t_fine = self.t_fine
var1 = t_fine / 2. - 64000.
var2 = var1 * var1 * dig['P6'] / 131072.
var2 = var2 + var1 * dig['P5'] * 2.
var2 = var2 / 4. + (dig['P4'] * 65536.)
var1 = (dig['P3'] * var1 * var1 / 16384. + dig['P2'] * var1) / 524288.
var1 = (1. + var1 / 32768.) * dig['P1']
if var1 == 0:
return 0.
else:
pressure = 1048576.0 - raw_pressure
pressure = ((pressure - var2 / 4096.) * 6250.) / var1
var1 = dig['P9'] * pressure * pressure / 2147483648.
var2 = pressure * dig['P8'] / 32768.
var3 = (pressure / 256.) * (pressure / 256.) * (pressure / 256.) * (
dig['P10'] / 131072.)
return pressure + (var1 + var2 + var3 + (dig['P7'] * 128.)) / 16.
def _compensate_humidity_bme280(self, raw_humidity):
dig = self.dig
t_fine = self.t_fine
humidity = t_fine - 76800.
h1 = (
raw_humidity - (
dig['H4'] * 64. + dig['H5'] / 16384. * humidity))
h2 = (dig['H2'] / 65536. * (1. + dig['H6'] / 67108864. * humidity *
(1. + dig['H3'] / 67108864. * humidity)))
humidity = h1 * h2
humidity = humidity * (1. - dig['H1'] * humidity / 524288.)
return min(100., max(0., humidity))
def _compensate_humidity_bme680(self, raw_humidity):
dig = self.dig
temp_comp = self.temp
var1 = raw_humidity - (
(dig['H1'] * 16.) + ((dig['H3'] / 2.) * temp_comp))
var2 = var1 * ((dig['H2'] / 262144.) *
(1. + ((dig['H4'] / 16384.) * temp_comp) +
((dig['H5'] / 1048576.) * temp_comp * temp_comp)))
var3 = dig['H6'] / 16384.
var4 = dig['H7'] / 2097152.
humidity = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2)
return min(100., max(0., humidity))
def _compensate_gas(self, gas_raw, gas_range):
gas_switching_error = self.read_register('RANGE_SWITCHING_ERROR', 1)[0]
var1 = (1340. + 5. * gas_switching_error) * \
BME680_GAS_CONSTANTS[gas_range][0]
gas = var1 * BME680_GAS_CONSTANTS[gas_range][1] / (
gas_raw - 512. + var1)
return gas
def _calculate_gas_heater_resistance(self, target_temp):
amb_temp = self.temp
heater_data = self.read_register('RES_HEAT_VAL', 3)
res_heat_val = get_signed_byte(heater_data[0])
res_heat_range = (heater_data[2] & 0x30) >> 4
dig = self.dig
var1 = (dig['G1'] / 16.) + 49.
var2 = ((dig['G2'] / 32768.) * 0.0005) + 0.00235
var3 = dig['G3'] / 1024.
var4 = var1 * (1. + (var2 * target_temp))
var5 = var4 + (var3 * amb_temp)
res_heat = (3.4 * ((var5 * (4. / (4. + res_heat_range))
* (1. / (1. + (res_heat_val * 0.002)))) - 25))
return int(res_heat)
def _calculate_gas_heater_duration(self, duration_ms):
if duration_ms >= 4032:
duration_reg = 0xff
else:
factor = 0
while duration_ms > 0x3F:
duration_ms //= 4
factor += 1
duration_reg = duration_ms + (factor * 64)
return duration_reg
def read_id(self):
# read chip id register
regs = [BME_CHIP_ID_REG]
params = self.i2c.i2c_read(regs, 1)
return bytearray(params['response'])[0]
def read_register(self, reg_name, read_len):
# read a single register
regs = [self.chip_registers[reg_name]]
params = self.i2c.i2c_read(regs, read_len)
return bytearray(params['response'])
def write_register(self, reg_name, data):
if type(data) is not list:
data = [data]
reg = self.chip_registers[reg_name]
data.insert(0, reg)
self.i2c.i2c_write(data)
def get_status(self, eventtime):
data = {
'temperature': round(self.temp, 2),
'pressure': self.pressure
}
if self.chip_type in ('BME280', 'BME680'):
data['humidity'] = self.humidity
if self.chip_type == 'BME680':
data['gas'] = self.gas
return data
def load_config(config):
# Register sensor
pheaters = config.get_printer().load_object(config, "heaters")
pheaters.add_sensor_factory("BME280", BME280)