klipper/klippy/extras/bed_mesh.py

892 lines
38 KiB
Python

# Mesh Bed Leveling
#
# Copyright (C) 2018 Kevin O'Connor <kevin@koconnor.net>
# Copyright (C) 2018-2019 Eric Callahan <arksine.code@gmail.com>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging
import math
import json
import probe
import collections
PROFILE_VERSION = 1
PROFILE_OPTIONS = {
'min_x': float, 'max_x': float, 'min_y': float, 'max_y': float,
'x_count': int, 'y_count': int, 'mesh_x_pps': int, 'mesh_y_pps': int,
'algo': str, 'tension': float
}
class BedMeshError(Exception):
pass
# PEP 485 isclose()
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
# Constrain value between min and max
def constrain(val, min_val, max_val):
return min(max_val, max(min_val, val))
# Linear interpolation between two values
def lerp(t, v0, v1):
return (1. - t) * v0 + t * v1
# retreive commma separated pair from config
def parse_pair(config, param, check=True, cast=float,
minval=None, maxval=None):
val = config.get(*param).strip().split(',', 1)
pair = tuple(cast(p.strip()) for p in val)
if check and len(pair) != 2:
raise config.error(
"bed_mesh: malformed '%s' value: %s"
% (param[0], config.get(*param)))
elif len(pair) == 1:
pair = (pair[0], pair[0])
if minval is not None:
if pair[0] < minval or pair[1] < minval:
raise config.error(
"Option '%s' in section bed_mesh must have a minimum of %s"
% (param[0], str(minval)))
if maxval is not None:
if pair[0] > maxval or pair[1] > maxval:
raise config.error(
"Option '%s' in section bed_mesh must have a maximum of %s"
% (param[0], str(maxval)))
return pair
class BedMesh:
FADE_DISABLE = 0x7FFFFFFF
def __init__(self, config):
self.printer = config.get_printer()
self.printer.register_event_handler("klippy:ready",
self.handle_ready)
self.last_position = [0., 0., 0., 0.]
self.bmc = BedMeshCalibrate(config, self)
self.z_mesh = None
self.toolhead = None
self.horizontal_move_z = config.getfloat('horizontal_move_z', 5.)
self.fade_start = config.getfloat('fade_start', 1.)
self.fade_end = config.getfloat('fade_end', 0.)
self.fade_dist = self.fade_end - self.fade_start
if self.fade_dist <= 0.:
self.fade_start = self.fade_end = self.FADE_DISABLE
self.log_fade_complete = False
self.base_fade_target = config.getfloat('fade_target', None)
self.fade_target = 0.
self.gcode = self.printer.lookup_object('gcode')
self.splitter = MoveSplitter(config, self.gcode)
self.gcode.register_command(
'BED_MESH_OUTPUT', self.cmd_BED_MESH_OUTPUT,
desc=self.cmd_BED_MESH_OUTPUT_help)
self.gcode.register_command(
'BED_MESH_MAP', self.cmd_BED_MESH_MAP,
desc=self.cmd_BED_MESH_MAP_help)
self.gcode.register_command(
'BED_MESH_CLEAR', self.cmd_BED_MESH_CLEAR,
desc=self.cmd_BED_MESH_CLEAR_help)
self.gcode.set_move_transform(self)
def handle_ready(self):
self.toolhead = self.printer.lookup_object('toolhead')
self.bmc.handle_ready()
def set_mesh(self, mesh):
if mesh is not None and self.fade_end != self.FADE_DISABLE:
self.log_fade_complete = True
if self.base_fade_target is None:
self.fade_target = mesh.avg_z
else:
self.fade_target = self.base_fade_target
min_z, max_z = mesh.get_z_range()
if (not min_z <= self.fade_target <= max_z and
self.fade_target != 0.):
# fade target is non-zero, out of mesh range
err_target = self.fade_target
self.z_mesh = None
self.fade_target = 0.
raise self.gcode.error(
"bed_mesh: ERROR, fade_target lies outside of mesh z "
"range\nmin: %.4f, max: %.4f, fade_target: %.4f"
% (min_z, max_z, err_target))
if self.fade_target:
mesh.offset_mesh(self.fade_target)
min_z, max_z = mesh.get_z_range()
if self.fade_dist <= max(abs(min_z), abs(max_z)):
self.z_mesh = None
self.fade_target = 0.
raise self.gcode.error(
"bed_mesh: Mesh extends outside of the fade range, "
"please see the fade_start and fade_end options in"
"example-extras.cfg. fade distance: %.2f mesh min: %.4f"
"mesh max: %.4f" % (self.fade_dist, min_z, max_z))
else:
self.fade_target = 0.
self.z_mesh = mesh
self.splitter.initialize(mesh)
# cache the current position before a transform takes place
self.gcode.reset_last_position()
def get_z_factor(self, z_pos):
if z_pos >= self.fade_end:
return 0.
elif z_pos >= self.fade_start:
return (self.fade_end - z_pos) / self.fade_dist
else:
return 1.
def get_position(self):
# Return last, non-transformed position
if self.z_mesh is None:
# No mesh calibrated, so send toolhead position
self.last_position[:] = self.toolhead.get_position()
self.last_position[2] -= self.fade_target
else:
# return current position minus the current z-adjustment
x, y, z, e = self.toolhead.get_position()
z_adj = self.z_mesh.calc_z(x, y)
factor = 1.
max_adj = z_adj + self.fade_target
if min(z, (z - max_adj)) >= self.fade_end:
# Fade out is complete, no factor
factor = 0.
elif max(z, (z - max_adj)) >= self.fade_start:
# Likely in the process of fading out adjustment.
# Because we don't yet know the gcode z position, use
# algebra to calculate the factor from the toolhead pos
factor = ((self.fade_end + self.fade_target - z) /
(self.fade_dist - z_adj))
factor = constrain(factor, 0., 1.)
final_z_adj = factor * z_adj + self.fade_target
self.last_position[:] = [x, y, z - final_z_adj, e]
return list(self.last_position)
def move(self, newpos, speed):
factor = self.get_z_factor(newpos[2])
if self.z_mesh is None or not factor:
# No mesh calibrated, or mesh leveling phased out.
x, y, z, e = newpos
if self.log_fade_complete:
self.log_fade_complete = False
logging.info(
"bed_mesh fade complete: Current Z: %.4f fade_target: %.4f "
% (z, self.fade_target))
self.toolhead.move([x, y, z + self.fade_target, e], speed)
else:
self.splitter.build_move(self.last_position, newpos, factor)
while not self.splitter.traverse_complete:
split_move = self.splitter.split()
if split_move:
self.toolhead.move(split_move, speed)
else:
raise self.gcode.error(
"Mesh Leveling: Error splitting move ")
self.last_position[:] = newpos
cmd_BED_MESH_OUTPUT_help = "Retrieve interpolated grid of probed z-points"
def cmd_BED_MESH_OUTPUT(self, params):
if self.gcode.get_int('PGP', params, 0):
# Print Generated Points instead of mesh
self.bmc.print_generated_points(self.gcode.respond_info)
elif self.z_mesh is None:
self.gcode.respond_info("Bed has not been probed")
else:
self.bmc.print_probed_positions(self.gcode.respond_info)
self.z_mesh.print_mesh(self.gcode.respond_raw,
self.horizontal_move_z)
cmd_BED_MESH_MAP_help = "Serialize mesh and output to terminal"
def cmd_BED_MESH_MAP(self, params):
if self.z_mesh is not None:
params = self.z_mesh.mesh_params
outdict = {
'mesh_min': (params['min_x'], params['min_y']),
'mesh_max': (params['max_x'], params['max_y']),
'z_positions': self.bmc.probed_matrix}
self.gcode.respond_raw("mesh_map_output " + json.dumps(outdict))
else:
self.gcode.respond_info("Bed has not been probed")
cmd_BED_MESH_CLEAR_help = "Clear the Mesh so no z-adjusment is made"
def cmd_BED_MESH_CLEAR(self, params):
self.set_mesh(None)
class BedMeshCalibrate:
ALGOS = ['lagrange', 'bicubic']
def __init__(self, config, bedmesh):
self.printer = config.get_printer()
self.name = config.get_name()
self.radius = self.origin = None
self.relative_reference_index = config.getint(
'relative_reference_index', None)
self.bedmesh = bedmesh
self.probed_matrix = None
self.mesh_params = collections.OrderedDict()
self.points = self._generate_points(config)
self._init_mesh_params(config, self.points)
self.probe_helper = probe.ProbePointsHelper(
config, self.probe_finalize, self.points)
self.probe_helper.minimum_points(3)
self.probe_helper.use_xy_offsets(True)
# setup persistent storage
self.profiles = {}
self.incompatible_profiles = []
self._load_storage(config)
self.gcode = self.printer.lookup_object('gcode')
self.gcode.register_command(
'BED_MESH_CALIBRATE', self.cmd_BED_MESH_CALIBRATE,
desc=self.cmd_BED_MESH_CALIBRATE_help)
self.gcode.register_command(
'BED_MESH_PROFILE', self.cmd_BED_MESH_PROFILE,
desc=self.cmd_BED_MESH_PROFILE_help)
def handle_ready(self):
self.print_generated_points(logging.info)
self._check_incompatible_profiles()
if "default" in self.profiles:
self.load_profile("default")
def _generate_points(self, config):
self.radius = config.getfloat('mesh_radius', None, above=0.)
if self.radius is not None:
self.origin = parse_pair(config, ('mesh_origin', "0, 0"))
x_cnt = y_cnt = config.getint('round_probe_count', 5, minval=3)
# round beds must have an odd number of points along each axis
if not x_cnt & 1:
raise config.error(
"bed_mesh: probe_count must be odd for round beds")
# radius may have precision to .1mm
self.radius = math.floor(self.radius * 10) / 10
min_x = min_y = -self.radius
max_x = max_y = self.radius
else:
# rectangular
x_cnt, y_cnt = parse_pair(
config, ('probe_count', '3'), check=False, cast=int, minval=3)
min_x, min_y = parse_pair(config, ('mesh_min',))
max_x, max_y = parse_pair(config, ('mesh_max',))
if max_x <= min_x or max_y <= min_y:
raise config.error('bed_mesh: invalid min/max points')
self.mesh_params['x_count'] = x_cnt
self.mesh_params['y_count'] = y_cnt
x_dist = (max_x - min_x) / (x_cnt - 1)
y_dist = (max_y - min_y) / (y_cnt - 1)
# floor distances down to next hundredth
x_dist = math.floor(x_dist * 100) / 100
y_dist = math.floor(y_dist * 100) / 100
if x_dist <= 1. or y_dist <= 1.:
raise config.error("bed_mesh: min/max points too close together")
if self.radius is not None:
# round bed, min/max needs to be recalculated
y_dist = x_dist
new_r = (x_cnt / 2) * x_dist
min_x = min_y = -new_r
max_x = max_y = new_r
else:
# rectangular bed, only re-calc max_x
max_x = min_x + x_dist * (x_cnt - 1)
pos_y = min_y
points = []
for i in range(y_cnt):
for j in range(x_cnt):
if not i % 2:
# move in positive directon
pos_x = min_x + j * x_dist
else:
# move in negative direction
pos_x = max_x - j * x_dist
if self.radius is None:
# rectangular bed, append
points.append((pos_x, pos_y))
else:
# round bed, check distance from origin
dist_from_origin = math.sqrt(pos_x*pos_x + pos_y*pos_y)
if dist_from_origin <= self.radius:
points.append(
(self.origin[0] + pos_x, self.origin[1] + pos_y))
pos_y += y_dist
return points
def print_generated_points(self, print_func):
x_offset = y_offset = 0.
probe = self.printer.lookup_object('probe', None)
if probe is not None:
x_offset, y_offset = probe.get_offsets()[:2]
print_func("bed_mesh: generated points\nIndex"
" | Tool Adjusted | Probe")
for i, (x, y) in enumerate(self.points):
adj_pt = "(%.1f, %.1f)" % (x - x_offset, y - y_offset)
mesh_pt = "(%.1f, %.1f)" % (x, y)
print_func(
" %-4d| %-16s| %s" % (i, adj_pt, mesh_pt))
if self.relative_reference_index is not None:
rri = self.relative_reference_index
print_func(
"bed_mesh: relative_reference_index %d is (%.2f, %.2f)"
% (rri, self.points[rri][0], self.points[rri][1]))
def _init_mesh_params(self, config, points):
pps = parse_pair(config, ('mesh_pps', '2'), check=False,
cast=int, minval=0)
params = self.mesh_params
params['mesh_x_pps'] = pps[0]
params['mesh_y_pps'] = pps[1]
params['algo'] = config.get('algorithm', 'lagrange').strip().lower()
if params['algo'] not in self.ALGOS:
raise config.error(
"bed_mesh: Unknown algorithm <%s>"
% (self.mesh_params['algo']))
# Check the algorithm against the current configuration
max_probe_cnt = max(params['x_count'], params['y_count'])
min_probe_cnt = min(params['x_count'], params['y_count'])
if max(pps[0], pps[1]) == 0:
# Interpolation disabled
self.mesh_params['algo'] = 'direct'
elif params['algo'] == 'lagrange' and max_probe_cnt > 6:
# Lagrange interpolation tends to oscillate when using more
# than 6 samples
raise config.error(
"bed_mesh: cannot exceed a probe_count of 6 when using "
"lagrange interpolation. Configured Probe Count: %d, %d" %
(self.mesh_params['x_count'], self.mesh_params['y_count']))
elif params['algo'] == 'bicubic' and min_probe_cnt < 4:
if max_probe_cnt > 6:
raise config.error(
"bed_mesh: invalid probe_count option when using bicubic "
"interpolation. Combination of 3 points on one axis with "
"more than 6 on another is not permitted. "
"Configured Probe Count: %d, %d" %
(self.mesh_params['x_count'], self.mesh_params['y_count']))
else:
logging.info(
"bed_mesh: bicubic interpolation with a probe_count of "
"less than 4 points detected. Forcing lagrange "
"interpolation. Configured Probe Count: %d, %d" %
(self.mesh_params['x_count'], self.mesh_params['y_count']))
params['algo'] = 'lagrange'
params['tension'] = config.getfloat(
'bicubic_tension', .2, minval=0., maxval=2.)
def _check_incompatible_profiles(self):
if self.incompatible_profiles:
configfile = self.printer.lookup_object('configfile')
for profile in self.incompatible_profiles:
configfile.remove_section('bed_mesh ' + profile)
self.gcode.respond_info(
"The following incompatible profiles have been detected\n"
"and are scheduled for removal:\n%s\n"
"The SAVE_CONFIG command will update the printer config\n"
"file and restart the printer" %
(('\n').join(self.incompatible_profiles)))
def _load_storage(self, config):
stored_profs = config.get_prefix_sections(self.name)
# Remove primary bed_mesh section, as it is not a stored profile
stored_profs = [s for s in stored_profs
if s.get_name() != self.name]
for profile in stored_profs:
name = profile.get_name().split(' ', 1)[1]
version = profile.getint('version', 0)
if version != PROFILE_VERSION:
logging.info(
"bed_mesh: Profile [%s] not compatible with this version\n"
"of bed_mesh. Profile Version: %d Current Version: %d "
% (name, version, PROFILE_VERSION))
self.incompatible_profiles.append(name)
continue
self.profiles[name] = {}
z_values = profile.get('points').split('\n')
self.profiles[name]['points'] = \
[[float(pt.strip()) for pt in line.split(',')]
for line in z_values if line.strip()]
self.profiles[name]['mesh_params'] = params = \
collections.OrderedDict()
for key, t in PROFILE_OPTIONS.iteritems():
if t is int:
params[key] = profile.getint(key)
elif t is float:
params[key] = profile.getfloat(key)
elif t is str:
params[key] = profile.get(key)
def save_profile(self, prof_name):
if self.probed_matrix is None:
self.gcode.respond_info(
"Unable to save to profile [%s], the bed has not been probed"
% (prof_name))
return
configfile = self.printer.lookup_object('configfile')
cfg_name = self.name + " " + prof_name
# set params
z_values = ""
for line in self.probed_matrix:
z_values += "\n "
for p in line:
z_values += "%.6f, " % p
z_values = z_values[:-2]
configfile.set(cfg_name, 'version', PROFILE_VERSION)
configfile.set(cfg_name, 'points', z_values)
for key, value in self.mesh_params.iteritems():
configfile.set(cfg_name, key, value)
# save copy in local storage
self.profiles[prof_name] = profile = {}
profile['points'] = list(self.probed_matrix)
profile['mesh_params'] = collections.OrderedDict(self.mesh_params)
self.gcode.respond_info(
"Bed Mesh state has been saved to profile [%s]\n"
"for the current session. The SAVE_CONFIG command will\n"
"update the printer config file and restart the printer."
% (prof_name))
def load_profile(self, prof_name):
profile = self.profiles.get(prof_name, None)
if profile is None:
raise self.gcode.error(
"bed_mesh: Unknown profile [%s]" % prof_name)
self.probed_matrix = profile['points']
zmesh = ZMesh(profile['mesh_params'])
try:
zmesh.build_mesh(self.probed_matrix)
except BedMeshError as e:
raise self.gcode.error(e.message)
self.bedmesh.set_mesh(zmesh)
def remove_profile(self, prof_name):
if prof_name in self.profiles:
configfile = self.printer.lookup_object('configfile')
configfile.remove_section('bed_mesh ' + prof_name)
del self.profiles[prof_name]
self.gcode.respond_info(
"Profile [%s] removed from storage for this session.\n"
"The SAVE_CONFIG command will update the printer\n"
"configuration and restart the printer" % (prof_name))
else:
self.gcode.respond_info(
"No profile named [%s] to remove" % (prof_name))
cmd_BED_MESH_PROFILE_help = "Bed Mesh Persistent Storage management"
def cmd_BED_MESH_PROFILE(self, params):
options = collections.OrderedDict({
'LOAD': self.load_profile,
'SAVE': self.save_profile,
'REMOVE': self.remove_profile
})
for key in options:
name = self.gcode.get_str(key, params, None)
if name is not None:
if name == "default" and key == 'SAVE':
self.gcode.respond_info(
"Profile 'default' is reserved, please chose"
" another profile name.")
else:
options[key](name)
return
self.gcode.respond_info(
"Invalid syntax '%s'" % (params['#original']))
cmd_BED_MESH_CALIBRATE_help = "Perform Mesh Bed Leveling"
def cmd_BED_MESH_CALIBRATE(self, params):
self.build_map = False
self.bedmesh.set_mesh(None)
self.probe_helper.start_probe(params)
def print_probed_positions(self, print_func):
if self.probed_matrix is not None:
msg = "Mesh Leveling Probed Z positions:\n"
for line in self.probed_matrix:
for x in line:
msg += " %f" % x
msg += "\n"
print_func(msg)
else:
print_func("bed_mesh: bed has not been probed")
def probe_finalize(self, offsets, positions):
x_offset, y_offset, z_offset = offsets
params = self.mesh_params
params['min_x'] = min(positions, key=lambda p: p[0])[0] + x_offset
params['max_x'] = max(positions, key=lambda p: p[0])[0] + x_offset
params['min_y'] = min(positions, key=lambda p: p[1])[1] + y_offset
params['max_y'] = max(positions, key=lambda p: p[1])[1] + y_offset
x_cnt = params['x_count']
y_cnt = params['y_count']
if self.relative_reference_index is not None:
# zero out probe z offset and
# set offset relative to reference index
z_offset = positions[self.relative_reference_index][2]
self.probed_matrix = []
row = []
prev_pos = positions[0]
for pos in positions:
if not isclose(pos[1], prev_pos[1], abs_tol=.1):
# y has changed, append row and start new
self.probed_matrix.append(row)
row = []
if pos[0] > prev_pos[0]:
# probed in the positive direction
row.append(pos[2] - z_offset)
else:
# probed in the negative direction
row.insert(0, pos[2] - z_offset)
prev_pos = pos
# append last row
self.probed_matrix.append(row)
# make sure the y-axis is the correct length
if len(self.probed_matrix) != y_cnt:
raise self.gcode.error(
("bed_mesh: Invalid y-axis table length\n"
"Probed table length: %d Probed Table:\n%s") %
(len(self.probed_matrix), str(self.probed_matrix)))
if self.radius is not None:
# round bed, extrapolate probed values to create a square mesh
for row in self.probed_matrix:
row_size = len(row)
if not row_size & 1:
# an even number of points in a row shouldn't be possible
msg = "bed_mesh: incorrect number of points sampled on X\n"
msg += "Probed Table:\n"
msg += str(self.probed_matrix)
raise self.gcode.error(msg)
buf_cnt = (x_cnt - row_size) / 2
if buf_cnt == 0:
continue
left_buffer = [row[0]] * buf_cnt
right_buffer = [row[row_size-1]] * buf_cnt
row[0:0] = left_buffer
row.extend(right_buffer)
# make sure that the x-axis is the correct length
for row in self.probed_matrix:
if len(row) != x_cnt:
raise self.gcode.error(
("bed_mesh: invalid x-axis table length\n"
"Probed table length: %d Probed Table:\n%s") %
(len(self.probed_matrix), str(self.probed_matrix)))
mesh = ZMesh(params)
try:
mesh.build_mesh(self.probed_matrix)
except BedMeshError as e:
raise self.gcode.error(e.message)
self.bedmesh.set_mesh(mesh)
self.gcode.respond_info("Mesh Bed Leveling Complete")
self.save_profile("default")
class MoveSplitter:
def __init__(self, config, gcode):
self.split_delta_z = config.getfloat(
'split_delta_z', .025, minval=0.01)
self.move_check_distance = config.getfloat(
'move_check_distance', 5., minval=3.)
self.z_mesh = None
self.gcode = gcode
def initialize(self, mesh):
self.z_mesh = mesh
def build_move(self, prev_pos, next_pos, factor):
self.prev_pos = tuple(prev_pos)
self.next_pos = tuple(next_pos)
self.current_pos = list(prev_pos)
self.z_factor = factor
self.z_offset = self._calc_z_offset(prev_pos)
self.traverse_complete = False
self.distance_checked = 0.
axes_d = [self.next_pos[i] - self.prev_pos[i] for i in range(4)]
self.total_move_length = math.sqrt(sum([d*d for d in axes_d[:3]]))
self.axis_move = [not isclose(d, 0., abs_tol=1e-10) for d in axes_d]
def _calc_z_offset(self, pos):
z = self.z_mesh.calc_z(pos[0], pos[1])
return self.z_factor * z + self.z_mesh.mesh_offset
def _set_next_move(self, distance_from_prev):
t = distance_from_prev / self.total_move_length
if t > 1. or t < 0.:
raise self.gcode.error(
"bed_mesh: Slice distance is negative "
"or greater than entire move length")
for i in range(4):
if self.axis_move[i]:
self.current_pos[i] = lerp(
t, self.prev_pos[i], self.next_pos[i])
def split(self):
if not self.traverse_complete:
if self.axis_move[0] or self.axis_move[1]:
# X and/or Y axis move, traverse if necessary
while self.distance_checked + self.move_check_distance \
< self.total_move_length:
self.distance_checked += self.move_check_distance
self._set_next_move(self.distance_checked)
next_z = self._calc_z_offset(self.current_pos)
if abs(next_z - self.z_offset) >= self.split_delta_z:
self.z_offset = next_z
return self.current_pos[0], self.current_pos[1], \
self.current_pos[2] + self.z_offset, \
self.current_pos[3]
# end of move reached
self.current_pos[:] = self.next_pos
self.z_offset = self._calc_z_offset(self.current_pos)
# Its okay to add Z-Offset to the final move, since it will not be
# used again.
self.current_pos[2] += self.z_offset
self.traverse_complete = True
return self.current_pos
else:
# Traverse complete
return None
class ZMesh:
def __init__(self, params):
self.mesh_matrix = None
self.mesh_params = params
self.avg_z = 0.
self.mesh_offset = 0.
logging.debug('bed_mesh: probe/mesh parameters:')
for key, value in self.mesh_params.iteritems():
logging.debug("%s : %s" % (key, value))
self.mesh_x_min = params['min_x']
self.mesh_x_max = params['max_x']
self.mesh_y_min = params['min_y']
self.mesh_y_max = params['max_y']
logging.debug(
"bed_mesh: Mesh Min: (%.2f,%.2f) Mesh Max: (%.2f,%.2f)"
% (self.mesh_x_min, self.mesh_y_min,
self.mesh_x_max, self.mesh_y_max))
# Set the interpolation algorithm
interpolation_algos = {
'lagrange': self._sample_lagrange,
'bicubic': self._sample_bicubic,
'direct': self._sample_direct
}
self._sample = interpolation_algos.get(params['algo'])
# Number of points to interpolate per segment
mesh_x_pps = params['mesh_x_pps']
mesh_y_pps = params['mesh_y_pps']
px_cnt = params['x_count']
py_cnt = params['y_count']
self.mesh_x_count = (px_cnt - 1) * mesh_x_pps + px_cnt
self.mesh_y_count = (py_cnt - 1) * mesh_y_pps + py_cnt
self.x_mult = mesh_x_pps + 1
self.y_mult = mesh_y_pps + 1
logging.debug("bed_mesh: Mesh grid size - X:%d, Y:%d"
% (self.mesh_x_count, self.mesh_y_count))
self.mesh_x_dist = (self.mesh_x_max - self.mesh_x_min) / \
(self.mesh_x_count - 1)
self.mesh_y_dist = (self.mesh_y_max - self.mesh_y_min) / \
(self.mesh_y_count - 1)
def print_mesh(self, print_func, move_z=None):
if self.mesh_matrix is not None:
msg = "Mesh X,Y: %d,%d\n" % (self.mesh_x_count, self.mesh_y_count)
if move_z is not None:
msg += "Search Height: %d\n" % (move_z)
msg += "Mesh Average: %.2f\n" % (self.avg_z)
rng = self.get_z_range()
msg += "Mesh Range: min=%.4f max=%.4f\n" % (rng[0], rng[1])
msg += "Interpolation Algorithm: %s\n" \
% (self.mesh_params['algo'])
msg += "Measured points:\n"
for y_line in range(self.mesh_y_count - 1, -1, -1):
for z in self.mesh_matrix[y_line]:
msg += " %f" % (z + self.mesh_offset)
msg += "\n"
print_func(msg)
else:
print_func("bed_mesh: Z Mesh not generated")
def build_mesh(self, z_matrix):
self._sample(z_matrix)
self.avg_z = (sum([sum(x) for x in self.mesh_matrix]) /
sum([len(x) for x in self.mesh_matrix]))
# Round average to the nearest 100th. This
# should produce an offset that is divisible by common
# z step distances
self.avg_z = round(self.avg_z, 2)
self.print_mesh(logging.debug)
def offset_mesh(self, offset):
if self.mesh_matrix:
self.mesh_offset = offset
for y_line in self.mesh_matrix:
for idx, z in enumerate(y_line):
y_line[idx] = z - self.mesh_offset
def get_x_coordinate(self, index):
return self.mesh_x_min + self.mesh_x_dist * index
def get_y_coordinate(self, index):
return self.mesh_y_min + self.mesh_y_dist * index
def calc_z(self, x, y):
if self.mesh_matrix is not None:
tbl = self.mesh_matrix
tx, xidx = self._get_linear_index(x, 0)
ty, yidx = self._get_linear_index(y, 1)
z0 = lerp(tx, tbl[yidx][xidx], tbl[yidx][xidx+1])
z1 = lerp(tx, tbl[yidx+1][xidx], tbl[yidx+1][xidx+1])
return lerp(ty, z0, z1)
else:
# No mesh table generated, no z-adjustment
return 0.
def get_z_range(self):
if self.mesh_matrix is not None:
mesh_min = min([min(x) for x in self.mesh_matrix])
mesh_max = max([max(x) for x in self.mesh_matrix])
return mesh_min, mesh_max
else:
return 0., 0.
def _get_linear_index(self, coord, axis):
if axis == 0:
# X-axis
mesh_min = self.mesh_x_min
mesh_cnt = self.mesh_x_count
mesh_dist = self.mesh_x_dist
cfunc = self.get_x_coordinate
else:
# Y-axis
mesh_min = self.mesh_y_min
mesh_cnt = self.mesh_y_count
mesh_dist = self.mesh_y_dist
cfunc = self.get_y_coordinate
t = 0.
idx = int(math.floor((coord - mesh_min) / mesh_dist))
idx = constrain(idx, 0, mesh_cnt - 2)
t = (coord - cfunc(idx)) / mesh_dist
return constrain(t, 0., 1.), idx
def _sample_direct(self, z_matrix):
self.mesh_matrix = z_matrix
def _sample_lagrange(self, z_matrix):
x_mult = self.x_mult
y_mult = self.y_mult
self.mesh_matrix = \
[[0. if ((i % x_mult) or (j % y_mult))
else z_matrix[j/y_mult][i/x_mult]
for i in range(self.mesh_x_count)]
for j in range(self.mesh_y_count)]
xpts, ypts = self._get_lagrange_coords()
# Interpolate X coordinates
for i in range(self.mesh_y_count):
# only interpolate X-rows that have probed coordinates
if i % y_mult != 0:
continue
for j in range(self.mesh_x_count):
if j % x_mult == 0:
continue
x = self.get_x_coordinate(j)
self.mesh_matrix[i][j] = self._calc_lagrange(xpts, x, i, 0)
# Interpolate Y coordinates
for i in range(self.mesh_x_count):
for j in range(self.mesh_y_count):
if j % y_mult == 0:
continue
y = self.get_y_coordinate(j)
self.mesh_matrix[j][i] = self._calc_lagrange(ypts, y, i, 1)
def _get_lagrange_coords(self):
xpts = []
ypts = []
for i in range(self.mesh_params['x_count']):
xpts.append(self.get_x_coordinate(i * self.x_mult))
for j in range(self.mesh_params['y_count']):
ypts.append(self.get_y_coordinate(j * self.y_mult))
return xpts, ypts
def _calc_lagrange(self, lpts, c, vec, axis=0):
pt_cnt = len(lpts)
total = 0.
for i in range(pt_cnt):
n = 1.
d = 1.
for j in range(pt_cnt):
if j == i:
continue
n *= (c - lpts[j])
d *= (lpts[i] - lpts[j])
if axis == 0:
# Calc X-Axis
z = self.mesh_matrix[vec][i*self.x_mult]
else:
# Calc Y-Axis
z = self.mesh_matrix[i*self.y_mult][vec]
total += z * n / d
return total
def _sample_bicubic(self, z_matrix):
# should work for any number of probe points above 3x3
x_mult = self.x_mult
y_mult = self.y_mult
c = self.mesh_params['tension']
self.mesh_matrix = \
[[0. if ((i % x_mult) or (j % y_mult))
else z_matrix[j/y_mult][i/x_mult]
for i in range(self.mesh_x_count)]
for j in range(self.mesh_y_count)]
# Interpolate X values
for y in range(self.mesh_y_count):
if y % y_mult != 0:
continue
for x in range(self.mesh_x_count):
if x % x_mult == 0:
continue
pts = self._get_x_ctl_pts(x, y)
self.mesh_matrix[y][x] = self._cardinal_spline(pts, c)
# Interpolate Y values
for x in range(self.mesh_x_count):
for y in range(self.mesh_y_count):
if y % y_mult == 0:
continue
pts = self._get_y_ctl_pts(x, y)
self.mesh_matrix[y][x] = self._cardinal_spline(pts, c)
def _get_x_ctl_pts(self, x, y):
# Fetch control points and t for a X value in the mesh
x_mult = self.x_mult
x_row = self.mesh_matrix[y]
last_pt = self.mesh_x_count - 1 - x_mult
if x < x_mult:
p0 = p1 = x_row[0]
p2 = x_row[x_mult]
p3 = x_row[2*x_mult]
t = x / float(x_mult)
elif x > last_pt:
p0 = x_row[last_pt - x_mult]
p1 = x_row[last_pt]
p2 = p3 = x_row[last_pt + x_mult]
t = (x - last_pt) / float(x_mult)
else:
found = False
for i in range(x_mult, last_pt, x_mult):
if x > i and x < (i + x_mult):
p0 = x_row[i - x_mult]
p1 = x_row[i]
p2 = x_row[i + x_mult]
p3 = x_row[i + 2*x_mult]
t = (x - i) / float(x_mult)
found = True
break
if not found:
raise BedMeshError(
"bed_mesh: Error finding x control points")
return p0, p1, p2, p3, t
def _get_y_ctl_pts(self, x, y):
# Fetch control points and t for a Y value in the mesh
y_mult = self.y_mult
last_pt = self.mesh_y_count - 1 - y_mult
y_col = self.mesh_matrix
if y < y_mult:
p0 = p1 = y_col[0][x]
p2 = y_col[y_mult][x]
p3 = y_col[2*y_mult][x]
t = y / float(y_mult)
elif y > last_pt:
p0 = y_col[last_pt - y_mult][x]
p1 = y_col[last_pt][x]
p2 = p3 = y_col[last_pt + y_mult][x]
t = (y - last_pt) / float(y_mult)
else:
found = False
for i in range(y_mult, last_pt, y_mult):
if y > i and y < (i + y_mult):
p0 = y_col[i - y_mult][x]
p1 = y_col[i][x]
p2 = y_col[i + y_mult][x]
p3 = y_col[i + 2*y_mult][x]
t = (y - i) / float(y_mult)
found = True
break
if not found:
raise BedMeshError(
"bed_mesh: Error finding y control points")
return p0, p1, p2, p3, t
def _cardinal_spline(self, p, tension):
t = p[4]
t2 = t*t
t3 = t2*t
m1 = tension * (p[2] - p[0])
m2 = tension * (p[3] - p[1])
a = p[1] * (2*t3 - 3*t2 + 1)
b = p[2] * (-2*t3 + 3*t2)
c = m1 * (t3 - 2*t2 + t)
d = m2 * (t3 - t2)
return a + b + c + d
def load_config(config):
return BedMesh(config)