klipper/klippy/clocksync.py

220 lines
10 KiB
Python

# Micro-controller clock synchronization
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import logging, math
RTT_AGE = .000010 / (60. * 60.)
DECAY = 1. / 30.
TRANSMIT_EXTRA = .001
class ClockSync:
def __init__(self, reactor):
self.reactor = reactor
self.serial = None
self.get_clock_timer = reactor.register_timer(self._get_clock_event)
self.get_clock_cmd = self.cmd_queue = None
self.queries_pending = 0
self.mcu_freq = 1.
self.last_clock = 0
self.clock_est = (0., 0., 0.)
# Minimum round-trip-time tracking
self.min_half_rtt = 999999999.9
self.min_rtt_time = 0.
# Linear regression of mcu clock and system sent_time
self.time_avg = self.time_variance = 0.
self.clock_avg = self.clock_covariance = 0.
self.prediction_variance = 0.
self.last_prediction_time = 0.
def connect(self, serial):
self.serial = serial
self.mcu_freq = serial.msgparser.get_constant_float('CLOCK_FREQ')
# Load initial clock and frequency
params = serial.send_with_response('get_uptime', 'uptime')
self.last_clock = (params['high'] << 32) | params['clock']
self.clock_avg = self.last_clock
self.time_avg = params['#sent_time']
self.clock_est = (self.time_avg, self.clock_avg, self.mcu_freq)
self.prediction_variance = (.001 * self.mcu_freq)**2
# Enable periodic get_clock timer
for i in range(8):
params = serial.send_with_response('get_clock', 'clock')
self._handle_clock(params)
self.reactor.pause(self.reactor.monotonic() + 0.050)
self.get_clock_cmd = serial.get_msgparser().create_command('get_clock')
self.cmd_queue = serial.alloc_command_queue()
serial.register_response(self._handle_clock, 'clock')
self.reactor.update_timer(self.get_clock_timer, self.reactor.NOW)
def connect_file(self, serial, pace=False):
self.serial = serial
self.mcu_freq = serial.msgparser.get_constant_float('CLOCK_FREQ')
self.clock_est = (0., 0., self.mcu_freq)
freq = 1000000000000.
if pace:
freq = self.mcu_freq
serial.set_clock_est(freq, self.reactor.monotonic(), 0)
# MCU clock querying (_handle_clock is invoked from background thread)
def _get_clock_event(self, eventtime):
self.serial.raw_send(self.get_clock_cmd, 0, 0, self.cmd_queue)
self.queries_pending += 1
# Use an unusual time for the next event so clock messages
# don't resonate with other periodic events.
return eventtime + .9839
def _handle_clock(self, params):
self.queries_pending = 0
# Extend clock to 64bit
last_clock = self.last_clock
clock = (last_clock & ~0xffffffff) | params['clock']
if clock < last_clock:
clock += 0x100000000
self.last_clock = clock
# Check if this is the best round-trip-time seen so far
sent_time = params['#sent_time']
if not sent_time:
return
receive_time = params['#receive_time']
half_rtt = .5 * (receive_time - sent_time)
aged_rtt = (sent_time - self.min_rtt_time) * RTT_AGE
if half_rtt < self.min_half_rtt + aged_rtt:
self.min_half_rtt = half_rtt
self.min_rtt_time = sent_time
logging.debug("new minimum rtt %.3f: hrtt=%.6f freq=%d",
sent_time, half_rtt, self.clock_est[2])
# Filter out samples that are extreme outliers
exp_clock = ((sent_time - self.time_avg) * self.clock_est[2]
+ self.clock_avg)
clock_diff2 = (clock - exp_clock)**2
if (clock_diff2 > 25. * self.prediction_variance
and clock_diff2 > (.000500 * self.mcu_freq)**2):
if clock > exp_clock and sent_time < self.last_prediction_time+10.:
logging.debug("Ignoring clock sample %.3f:"
" freq=%d diff=%d stddev=%.3f",
sent_time, self.clock_est[2], clock - exp_clock,
math.sqrt(self.prediction_variance))
return
logging.info("Resetting prediction variance %.3f:"
" freq=%d diff=%d stddev=%.3f",
sent_time, self.clock_est[2], clock - exp_clock,
math.sqrt(self.prediction_variance))
self.prediction_variance = (.001 * self.mcu_freq)**2
else:
self.last_prediction_time = sent_time
self.prediction_variance = (
(1. - DECAY) * (self.prediction_variance + clock_diff2 * DECAY))
# Add clock and sent_time to linear regression
diff_sent_time = sent_time - self.time_avg
self.time_avg += DECAY * diff_sent_time
self.time_variance = (1. - DECAY) * (
self.time_variance + diff_sent_time**2 * DECAY)
diff_clock = clock - self.clock_avg
self.clock_avg += DECAY * diff_clock
self.clock_covariance = (1. - DECAY) * (
self.clock_covariance + diff_sent_time * diff_clock * DECAY)
# Update prediction from linear regression
new_freq = self.clock_covariance / self.time_variance
pred_stddev = math.sqrt(self.prediction_variance)
self.serial.set_clock_est(new_freq, self.time_avg + TRANSMIT_EXTRA,
int(self.clock_avg - 3. * pred_stddev))
self.clock_est = (self.time_avg + self.min_half_rtt,
self.clock_avg, new_freq)
#logging.debug("regr %.3f: freq=%.3f d=%d(%.3f)",
# sent_time, new_freq, clock - exp_clock, pred_stddev)
# clock frequency conversions
def print_time_to_clock(self, print_time):
return int(print_time * self.mcu_freq)
def clock_to_print_time(self, clock):
return clock / self.mcu_freq
# system time conversions
def get_clock(self, eventtime):
sample_time, clock, freq = self.clock_est
return int(clock + (eventtime - sample_time) * freq)
def estimate_clock_systime(self, reqclock):
sample_time, clock, freq = self.clock_est
return float(reqclock - clock)/freq + sample_time
def estimated_print_time(self, eventtime):
return self.clock_to_print_time(self.get_clock(eventtime))
# misc commands
def clock32_to_clock64(self, clock32):
last_clock = self.last_clock
clock_diff = (last_clock - clock32) & 0xffffffff
if clock_diff & 0x80000000:
return last_clock + 0x100000000 - clock_diff
return last_clock - clock_diff
def is_active(self):
return self.queries_pending <= 4
def dump_debug(self):
sample_time, clock, freq = self.clock_est
return ("clocksync state: mcu_freq=%d last_clock=%d"
" clock_est=(%.3f %d %.3f) min_half_rtt=%.6f min_rtt_time=%.3f"
" time_avg=%.3f(%.3f) clock_avg=%.3f(%.3f)"
" pred_variance=%.3f" % (
self.mcu_freq, self.last_clock, sample_time, clock, freq,
self.min_half_rtt, self.min_rtt_time,
self.time_avg, self.time_variance,
self.clock_avg, self.clock_covariance,
self.prediction_variance))
def stats(self, eventtime):
sample_time, clock, freq = self.clock_est
return "freq=%d" % (freq,)
def calibrate_clock(self, print_time, eventtime):
return (0., self.mcu_freq)
# Clock syncing code for secondary MCUs (whose clocks are sync'ed to a
# primary MCU)
class SecondarySync(ClockSync):
def __init__(self, reactor, main_sync):
ClockSync.__init__(self, reactor)
self.main_sync = main_sync
self.clock_adj = (0., 1.)
self.last_sync_time = 0.
def connect(self, serial):
ClockSync.connect(self, serial)
self.clock_adj = (0., self.mcu_freq)
curtime = self.reactor.monotonic()
main_print_time = self.main_sync.estimated_print_time(curtime)
local_print_time = self.estimated_print_time(curtime)
self.clock_adj = (main_print_time - local_print_time, self.mcu_freq)
self.calibrate_clock(0., curtime)
def connect_file(self, serial, pace=False):
ClockSync.connect_file(self, serial, pace)
self.clock_adj = (0., self.mcu_freq)
# clock frequency conversions
def print_time_to_clock(self, print_time):
adjusted_offset, adjusted_freq = self.clock_adj
return int((print_time - adjusted_offset) * adjusted_freq)
def clock_to_print_time(self, clock):
adjusted_offset, adjusted_freq = self.clock_adj
return clock / adjusted_freq + adjusted_offset
# misc commands
def dump_debug(self):
adjusted_offset, adjusted_freq = self.clock_adj
return "%s clock_adj=(%.3f %.3f)" % (
ClockSync.dump_debug(self), adjusted_offset, adjusted_freq)
def stats(self, eventtime):
adjusted_offset, adjusted_freq = self.clock_adj
return "%s adj=%d" % (ClockSync.stats(self, eventtime), adjusted_freq)
def calibrate_clock(self, print_time, eventtime):
# Calculate: est_print_time = main_sync.estimatated_print_time()
ser_time, ser_clock, ser_freq = self.main_sync.clock_est
main_mcu_freq = self.main_sync.mcu_freq
est_main_clock = (eventtime - ser_time) * ser_freq + ser_clock
est_print_time = est_main_clock / main_mcu_freq
# Determine sync1_print_time and sync2_print_time
sync1_print_time = max(print_time, est_print_time)
sync2_print_time = max(sync1_print_time + 4., self.last_sync_time,
print_time + 2.5 * (print_time - est_print_time))
# Calc sync2_sys_time (inverse of main_sync.estimatated_print_time)
sync2_main_clock = sync2_print_time * main_mcu_freq
sync2_sys_time = ser_time + (sync2_main_clock - ser_clock) / ser_freq
# Adjust freq so estimated print_time will match at sync2_print_time
sync1_clock = self.print_time_to_clock(sync1_print_time)
sync2_clock = self.get_clock(sync2_sys_time)
adjusted_freq = ((sync2_clock - sync1_clock)
/ (sync2_print_time - sync1_print_time))
adjusted_offset = sync1_print_time - sync1_clock / adjusted_freq
# Apply new values
self.clock_adj = (adjusted_offset, adjusted_freq)
self.last_sync_time = sync2_print_time
return self.clock_adj