// Hardware interface to "fullspeed USB controller" // // Copyright (C) 2018-2021 Kevin O'Connor <kevin@koconnor.net> // // This file may be distributed under the terms of the GNU GPLv3 license. #include <string.h> // NULL #include "board/armcm_boot.h" // armcm_enable_irq #include "board/armcm_timer.h" // udelay #include "board/gpio.h" // gpio_out_setup #include "board/io.h" // writeb #include "board/usb_cdc.h" // usb_notify_ep0 #include "board/usb_cdc_ep.h" // USB_CDC_EP_BULK_IN #include "command.h" // DECL_CONSTANT_STR #include "internal.h" // GPIO #include "sched.h" // DECL_INIT #if CONFIG_MACH_STM32F103 || CONFIG_MACH_STM32G4 || CONFIG_MACH_N32G45x // Transfer memory is accessed with 32bits, but contains only 16bits of data typedef volatile uint32_t epmword_t; #define WSIZE 2 #define USBx_IRQn USB_LP_IRQn #elif CONFIG_MACH_STM32F0 || CONFIG_MACH_STM32L4 // Transfer memory is accessed with 16bits and contains 16bits of data typedef volatile uint16_t epmword_t; #define WSIZE 2 #define USBx_IRQn USB_IRQn #elif CONFIG_MACH_STM32G0 // Transfer memory is accessed with 32bits and contains 32bits of data typedef volatile uint32_t epmword_t; #define WSIZE 4 #define USBx_IRQn USB_IRQn #endif // The stm32g0 has slightly different register names #if CONFIG_MACH_STM32G0 #if CONFIG_MACH_STM32G0B1 #define USB_IRQn USB_UCPD1_2_IRQn #endif #define USB USB_DRD_FS #define USB_PMAADDR USB_DRD_PMAADDR #define USB_EPADDR_FIELD USB_CHEP_ADDR #define USB_EP_CTR_RX USB_EP_VTRX #define USB_EP_CTR_TX USB_EP_VTTX #define USB_EPRX_STAT USB_EP_RX_STRX #define USB_EPTX_STAT USB_EP_TX_STTX #define USB_ISTR_EP_ID USB_ISTR_IDN #define USB_CNTR_FRES USB_CNTR_USBRST #endif /**************************************************************** * USB transfer memory ****************************************************************/ // Layout of the USB transfer memory #define EPM ((epmword_t*)USB_PMAADDR) #define EPM_EP_DESC(ep) (&EPM[(ep) * (8 / WSIZE)]) #define EPM_BUF_OFFSET 0x10 #define EPM_EP_BUF_SIZE (64 / WSIZE + 1) #define EPM_EP_TX_BUF(ep) (&EPM[EPM_BUF_OFFSET + (ep)*2*EPM_EP_BUF_SIZE]) #define EPM_EP_RX_BUF(ep) (&EPM[EPM_BUF_OFFSET + (1+(ep)*2)*EPM_EP_BUF_SIZE]) // Configure the usb descriptor for an endpoint static void epm_ep_desc_setup(int ep, int rx_size) { uint32_t addr_tx = (EPM_EP_TX_BUF(ep) - EPM) * WSIZE, count_tx = 0; uint32_t addr_rx = (EPM_EP_RX_BUF(ep) - EPM) * WSIZE; uint32_t count_rx = (rx_size <= 30 ? DIV_ROUND_UP(rx_size, 2) << 10 : ((DIV_ROUND_UP(rx_size, 32) - 1) << 10) | 0x8000); epmword_t *desc = EPM_EP_DESC(ep); if (WSIZE == 2) { desc[0] = addr_tx; desc[1] = count_tx; desc[2] = addr_rx; desc[3] = count_rx; } else { desc[0] = addr_tx | (count_tx << 16); desc[1] = addr_rx | (count_rx << 16); } } // Return number of read bytes on an rx endpoint static uint32_t epm_get_ep_count_rx(int ep) { epmword_t *desc = EPM_EP_DESC(ep); if (WSIZE == 2) return desc[3] & 0x3ff; return (desc[1] >> 16) & 0x3ff; } // Set number of bytes ready to be transmitted on a tx endpoint static void epm_set_ep_count_tx(int ep, uint32_t count) { epmword_t *desc = EPM_EP_DESC(ep); if (WSIZE == 2) { desc[1] = count; } else { uint32_t addr_tx = (EPM_EP_TX_BUF(ep) - EPM) * WSIZE; desc[0] = addr_tx | (count << 16); } } // Setup the transfer descriptors in dedicated usb memory static void btable_configure(void) { epm_ep_desc_setup(0, USB_CDC_EP0_SIZE); epm_ep_desc_setup(USB_CDC_EP_ACM, 0); epm_ep_desc_setup(USB_CDC_EP_BULK_OUT, USB_CDC_EP_BULK_OUT_SIZE); epm_ep_desc_setup(USB_CDC_EP_BULK_IN, 0); } // Read a packet stored in dedicated usb memory static uint32_t btable_read_packet(int ep, uint8_t *dest, int max_len) { epmword_t *src = EPM_EP_RX_BUF(ep); uint32_t count = epm_get_ep_count_rx(ep); if (count > max_len) count = max_len; int i; for (i=0; i<count/WSIZE; i++) { uint32_t d = *src++; *dest++ = d; *dest++ = d >> 8; if (WSIZE == 4) { *dest++ = d >> 16; *dest++ = d >> 24; } } if (count & (WSIZE-1)) { uint32_t d = *src; *dest++ = d; if ((count & (WSIZE-1)) > 1) *dest++ = d >> 8; if ((count & (WSIZE-1)) > 2) *dest++ = d >> 16; } return count; } // Write a packet to dedicated usb memory static void btable_write_packet(int ep, const uint8_t *src, int count) { epmword_t *dest = EPM_EP_TX_BUF(ep); int i; for (i=0; i<count/WSIZE; i++) { uint8_t b1 = *src++, b2 = *src++, b3 = 0, b4 = 0; if (WSIZE == 4) { b3 = *src++; b4 = *src++; } *dest++ = b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); } if (count & (WSIZE-1)) { uint32_t d = *src++; if ((count & (WSIZE-1)) > 1) d |= *src++ << 8; if ((count & (WSIZE-1)) > 2) d |= *src++ << 16; *dest = d; } epm_set_ep_count_tx(ep, count); } /**************************************************************** * USB endpoint register ****************************************************************/ #define USB_EPR ((volatile uint32_t *)USB_BASE) #define EPR_RWBITS (USB_EPADDR_FIELD | USB_EP_KIND | USB_EP_TYPE_MASK) #define EPR_RWCBITS (USB_EP_CTR_RX | USB_EP_CTR_TX) static uint32_t set_stat_rx_bits(uint32_t epr, uint32_t bits) { return ((epr & (EPR_RWBITS | USB_EPRX_STAT)) ^ bits) | EPR_RWCBITS; } static uint32_t set_stat_tx_bits(uint32_t epr, uint32_t bits) { return ((epr & (EPR_RWBITS | USB_EPTX_STAT)) ^ bits) | EPR_RWCBITS; } static uint32_t set_stat_rxtx_bits(uint32_t epr, uint32_t bits) { uint32_t mask = EPR_RWBITS | USB_EPRX_STAT | USB_EPTX_STAT; return ((epr & mask) ^ bits) | EPR_RWCBITS; } /**************************************************************** * USB interface ****************************************************************/ int_fast8_t usb_read_bulk_out(void *data, uint_fast8_t max_len) { uint32_t epr = USB_EPR[USB_CDC_EP_BULK_OUT]; if ((epr & USB_EPRX_STAT) == USB_EP_RX_VALID) // No data ready return -1; uint32_t count = btable_read_packet(USB_CDC_EP_BULK_OUT, data, max_len); USB_EPR[USB_CDC_EP_BULK_OUT] = set_stat_rx_bits(epr, USB_EP_RX_VALID); return count; } int_fast8_t usb_send_bulk_in(void *data, uint_fast8_t len) { uint32_t epr = USB_EPR[USB_CDC_EP_BULK_IN]; if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK) // No buffer space available return -1; btable_write_packet(USB_CDC_EP_BULK_IN, data, len); USB_EPR[USB_CDC_EP_BULK_IN] = set_stat_tx_bits(epr, USB_EP_TX_VALID); return len; } int_fast8_t usb_read_ep0(void *data, uint_fast8_t max_len) { uint32_t epr = USB_EPR[0]; if ((epr & USB_EPRX_STAT) != USB_EP_RX_NAK) // No data ready return -1; uint32_t count = btable_read_packet(0, data, max_len); USB_EPR[0] = set_stat_rxtx_bits(epr, USB_EP_RX_VALID | USB_EP_TX_NAK); return count; } int_fast8_t usb_read_ep0_setup(void *data, uint_fast8_t max_len) { return usb_read_ep0(data, max_len); } int_fast8_t usb_send_ep0(const void *data, uint_fast8_t len) { uint32_t epr = USB_EPR[0]; if ((epr & USB_EPRX_STAT) != USB_EP_RX_VALID) // Transfer interrupted return -2; if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK) // No buffer space available return -1; btable_write_packet(0, data, len); USB_EPR[0] = set_stat_tx_bits(epr, USB_EP_TX_VALID); return len; } void usb_stall_ep0(void) { USB_EPR[0] = set_stat_rxtx_bits(USB_EPR[0] , USB_EP_RX_STALL | USB_EP_TX_STALL); } static uint8_t set_address; void usb_set_address(uint_fast8_t addr) { writeb(&set_address, addr | USB_DADDR_EF); usb_send_ep0(NULL, 0); } void usb_set_configure(void) { } /**************************************************************** * Setup and interrupts ****************************************************************/ // Configure interface after a USB reset event static void usb_reset(void) { USB_EPR[0] = 0 | USB_EP_CONTROL | USB_EP_RX_VALID | USB_EP_TX_NAK; USB_EPR[USB_CDC_EP_ACM] = (USB_CDC_EP_ACM | USB_EP_INTERRUPT | USB_EP_RX_NAK | USB_EP_TX_NAK); USB_EPR[USB_CDC_EP_BULK_OUT] = (USB_CDC_EP_BULK_OUT | USB_EP_BULK | USB_EP_RX_VALID | USB_EP_TX_NAK); USB_EPR[USB_CDC_EP_BULK_IN] = (USB_CDC_EP_BULK_IN | USB_EP_BULK | USB_EP_RX_NAK | USB_EP_TX_NAK); USB->CNTR = USB_CNTR_CTRM | USB_CNTR_RESETM; USB->DADDR = USB_DADDR_EF; } // Main irq handler void USB_IRQHandler(void) { uint32_t istr = USB->ISTR; if (istr & USB_ISTR_CTR) { // Endpoint activity uint32_t ep = istr & USB_ISTR_EP_ID; uint32_t epr = USB_EPR[ep]; USB_EPR[ep] = epr & EPR_RWBITS; if (ep == 0) { usb_notify_ep0(); if (epr & USB_EP_CTR_TX && set_address) { // Apply address after last "in" message transmitted USB->DADDR = set_address; set_address = 0; } } else if (ep == USB_CDC_EP_BULK_OUT) { usb_notify_bulk_out(); } else if (ep == USB_CDC_EP_BULK_IN) { usb_notify_bulk_in(); } } if (istr & USB_ISTR_RESET) { // USB Reset USB->ISTR = (uint16_t)~USB_ISTR_RESET; usb_reset(); } } DECL_CONSTANT_STR("RESERVE_PINS_USB", "PA11,PA12"); // Initialize the usb controller void usb_init(void) { if (CONFIG_MACH_STM32F1) { // Pull the D+ pin low briefly to signal a new connection gpio_out_setup(GPIO('A', 12), 0); udelay(5000); gpio_in_setup(GPIO('A', 12), 0); } // Enable USB clock enable_pclock(USB_BASE); // Setup USB packet memory btable_configure(); // Enable USB pullup #ifdef USB_BCDR_DPPU USB->BCDR = USB_BCDR_DPPU; #endif // Reset usb controller and enable interrupts USB->CNTR = USB_CNTR_FRES; USB->DADDR = 0; USB->CNTR = USB_CNTR_RESETM; USB->ISTR = 0; armcm_enable_irq(USB_IRQHandler, USBx_IRQn, 1); } DECL_INIT(usb_init);