// Hardware interface to "fullspeed USB controller" on stm32f1 // // Copyright (C) 2018-2019 Kevin O'Connor // // This file may be distributed under the terms of the GNU GPLv3 license. #include // NULL #include "autoconf.h" // CONFIG_STM32_FLASH_START_2000 #include "board/armcm_boot.h" // armcm_enable_irq #include "board/armcm_timer.h" // udelay #include "board/gpio.h" // gpio_out_setup #include "board/io.h" // writeb #include "board/usb_cdc.h" // usb_notify_ep0 #include "board/usb_cdc_ep.h" // USB_CDC_EP_BULK_IN #include "command.h" // DECL_CONSTANT_STR #include "internal.h" // GPIO #include "sched.h" // DECL_INIT #if CONFIG_MACH_STM32F103 // Transfer memory is accessed with 32bits, but contains only 16bits of data typedef volatile uint32_t epmword_t; #define USBx_IRQn USB_LP_IRQn #elif CONFIG_MACH_STM32F0 // Transfer memory is accessed with 16bits and contains 16bits of data typedef volatile uint16_t epmword_t; #define USBx_IRQn USB_IRQn #endif /**************************************************************** * USB transfer memory ****************************************************************/ struct ep_desc { epmword_t addr_tx, count_tx, addr_rx, count_rx; }; struct ep_mem { struct ep_desc ep0, ep_acm, ep_bulk_out, ep_bulk_in; epmword_t ep0_tx[USB_CDC_EP0_SIZE / 2]; epmword_t ep0_rx[USB_CDC_EP0_SIZE / 2 + 1]; epmword_t ep_acm_tx[USB_CDC_EP_ACM_SIZE / 2]; epmword_t ep_bulk_out_rx[USB_CDC_EP_BULK_OUT_SIZE / 2 + 1]; epmword_t ep_bulk_in_tx[USB_CDC_EP_BULK_IN_SIZE / 2]; }; #define EPM ((struct ep_mem *)USB_PMAADDR) #define CALC_ADDR(p) (((epmword_t*)(p) - (epmword_t*)EPM) * 2) #define CALC_SIZE(s) ((s) > 30 ? ((DIV_ROUND_UP((s), 32) - 1) << 10) | 0x8000 \ : DIV_ROUND_UP((s), 2) << 10) // Setup the transfer descriptors in dedicated usb memory static void btable_configure(void) { EPM->ep0.count_tx = 0; EPM->ep0.addr_tx = CALC_ADDR(EPM->ep0_tx); EPM->ep0.count_rx = CALC_SIZE(USB_CDC_EP0_SIZE); EPM->ep0.addr_rx = CALC_ADDR(EPM->ep0_rx); EPM->ep_acm.count_tx = 0; EPM->ep_acm.addr_tx = CALC_ADDR(EPM->ep_acm_tx); EPM->ep_bulk_out.count_rx = CALC_SIZE(USB_CDC_EP_BULK_OUT_SIZE); EPM->ep_bulk_out.addr_rx = CALC_ADDR(EPM->ep_bulk_out_rx); EPM->ep_bulk_in.count_tx = 0; EPM->ep_bulk_in.addr_tx = CALC_ADDR(EPM->ep_bulk_in_tx); } // Read a packet stored in dedicated usb memory static void btable_read_packet(uint8_t *dest, epmword_t *src, int count) { uint_fast8_t i; for (i=0; i<(count/2); i++) { uint32_t d = *src++; *dest++ = d; *dest++ = d >> 8; } if (count & 1) *dest = *src; } // Write a packet to dedicated usb memory static void btable_write_packet(epmword_t *dest, const uint8_t *src, int count) { int i; for (i=0; i<(count/2); i++) { uint8_t b1 = *src++, b2 = *src++; *dest++ = b1 | (b2 << 8); } if (count & 1) *dest = *src; } /**************************************************************** * USB endpoint register ****************************************************************/ #define USB_EPR ((volatile uint32_t *)USB_BASE) #define EPR_RWBITS (USB_EPADDR_FIELD | USB_EP_KIND | USB_EP_TYPE_MASK) #define EPR_RWCBITS (USB_EP_CTR_RX | USB_EP_CTR_TX) static uint32_t set_stat_rx_bits(uint32_t epr, uint32_t bits) { return ((epr & (EPR_RWBITS | USB_EPRX_STAT)) ^ bits) | EPR_RWCBITS; } static uint32_t set_stat_tx_bits(uint32_t epr, uint32_t bits) { return ((epr & (EPR_RWBITS | USB_EPTX_STAT)) ^ bits) | EPR_RWCBITS; } static uint32_t set_stat_rxtx_bits(uint32_t epr, uint32_t bits) { uint32_t mask = EPR_RWBITS | USB_EPRX_STAT | USB_EPTX_STAT; return ((epr & mask) ^ bits) | EPR_RWCBITS; } /**************************************************************** * USB interface ****************************************************************/ int_fast8_t usb_read_bulk_out(void *data, uint_fast8_t max_len) { uint32_t epr = USB_EPR[USB_CDC_EP_BULK_OUT]; if ((epr & USB_EPRX_STAT) == USB_EP_RX_VALID) // No data ready return -1; uint32_t count = EPM->ep_bulk_out.count_rx & 0x3ff; if (count > max_len) count = max_len; btable_read_packet(data, EPM->ep_bulk_out_rx, count); USB_EPR[USB_CDC_EP_BULK_OUT] = set_stat_rx_bits(epr, USB_EP_RX_VALID); return count; } int_fast8_t usb_send_bulk_in(void *data, uint_fast8_t len) { uint32_t epr = USB_EPR[USB_CDC_EP_BULK_IN]; if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK) // No buffer space available return -1; btable_write_packet(EPM->ep_bulk_in_tx, data, len); EPM->ep_bulk_in.count_tx = len; USB_EPR[USB_CDC_EP_BULK_IN] = set_stat_tx_bits(epr, USB_EP_TX_VALID); return len; } int_fast8_t usb_read_ep0(void *data, uint_fast8_t max_len) { uint32_t epr = USB_EPR[0]; if ((epr & USB_EPRX_STAT) != USB_EP_RX_NAK) // No data ready return -1; uint32_t count = EPM->ep0.count_rx & 0x3ff; if (count > max_len) count = max_len; btable_read_packet(data, EPM->ep0_rx, count); USB_EPR[0] = set_stat_rxtx_bits(epr, USB_EP_RX_VALID | USB_EP_TX_NAK); return count; } int_fast8_t usb_read_ep0_setup(void *data, uint_fast8_t max_len) { return usb_read_ep0(data, max_len); } int_fast8_t usb_send_ep0(const void *data, uint_fast8_t len) { uint32_t epr = USB_EPR[0]; if ((epr & USB_EPRX_STAT) != USB_EP_RX_VALID) // Transfer interrupted return -2; if ((epr & USB_EPTX_STAT) != USB_EP_TX_NAK) // No buffer space available return -1; btable_write_packet(EPM->ep0_tx, data, len); EPM->ep0.count_tx = len; USB_EPR[0] = set_stat_tx_bits(epr, USB_EP_TX_VALID); return len; } void usb_stall_ep0(void) { USB_EPR[0] = set_stat_rxtx_bits(USB_EPR[0] , USB_EP_RX_STALL | USB_EP_TX_STALL); } static uint8_t set_address; void usb_set_address(uint_fast8_t addr) { writeb(&set_address, addr | USB_DADDR_EF); usb_send_ep0(NULL, 0); } void usb_set_configure(void) { } /**************************************************************** * Setup and interrupts ****************************************************************/ // Configure interface after a USB reset event static void usb_reset(void) { USB_EPR[0] = 0 | USB_EP_CONTROL | USB_EP_RX_VALID | USB_EP_TX_NAK; USB_EPR[USB_CDC_EP_ACM] = (USB_CDC_EP_ACM | USB_EP_INTERRUPT | USB_EP_RX_NAK | USB_EP_TX_NAK); USB_EPR[USB_CDC_EP_BULK_OUT] = (USB_CDC_EP_BULK_OUT | USB_EP_BULK | USB_EP_RX_VALID | USB_EP_TX_NAK); USB_EPR[USB_CDC_EP_BULK_IN] = (USB_CDC_EP_BULK_IN | USB_EP_BULK | USB_EP_RX_NAK | USB_EP_TX_NAK); USB->CNTR = USB_CNTR_CTRM | USB_CNTR_RESETM; USB->DADDR = USB_DADDR_EF; } // Main irq handler void USB_IRQHandler(void) { uint32_t istr = USB->ISTR; if (istr & USB_ISTR_CTR) { // Endpoint activity uint32_t ep = istr & USB_ISTR_EP_ID; uint32_t epr = USB_EPR[ep]; USB_EPR[ep] = epr & EPR_RWBITS; if (ep == 0) { usb_notify_ep0(); if (epr & USB_EP_CTR_TX && set_address) { // Apply address after last "in" message transmitted USB->DADDR = set_address; set_address = 0; } } else if (ep == USB_CDC_EP_BULK_OUT) { usb_notify_bulk_out(); } else if (ep == USB_CDC_EP_BULK_IN) { usb_notify_bulk_in(); } } if (istr & USB_ISTR_RESET) { // USB Reset USB->ISTR = (uint16_t)~USB_ISTR_RESET; usb_reset(); } } DECL_CONSTANT_STR("RESERVE_PINS_USB", "PA11,PA12"); // Initialize the usb controller void usb_init(void) { if (CONFIG_MACH_STM32F1) { // Pull the D+ pin low briefly to signal a new connection gpio_out_setup(GPIO('A', 12), 0); udelay(5000); gpio_in_setup(GPIO('A', 12), 0); } // Enable USB clock enable_pclock(USB_BASE); // Setup USB packet memory btable_configure(); // Enable USB pullup #ifdef USB_BCDR_DPPU USB->BCDR = USB_BCDR_DPPU; #endif // Reset usb controller and enable interrupts USB->CNTR = USB_CNTR_FRES; USB->BTABLE = 0; USB->DADDR = 0; USB->CNTR = USB_CNTR_RESETM; USB->ISTR = 0; armcm_enable_irq(USB_IRQHandler, USBx_IRQn, 1); } DECL_INIT(usb_init);