# Obtain temperature using linear interpolation of ADC values # # Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net> # # This file may be distributed under the terms of the GNU GPLv3 license. import logging, bisect ###################################################################### # Interface between MCU adc and heater temperature callbacks ###################################################################### SAMPLE_TIME = 0.001 SAMPLE_COUNT = 8 REPORT_TIME = 0.300 RANGE_CHECK_COUNT = 4 # Interface between ADC and heater temperature callbacks class PrinterADCtoTemperature: def __init__(self, config, adc_convert): self.adc_convert = adc_convert ppins = config.get_printer().lookup_object('pins') self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin')) self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback) def setup_callback(self, temperature_callback): self.temperature_callback = temperature_callback def get_report_time_delta(self): return REPORT_TIME def adc_callback(self, read_time, read_value): temp = self.adc_convert.calc_temp(read_value) self.temperature_callback(read_time + SAMPLE_COUNT * SAMPLE_TIME, temp) def setup_minmax(self, min_temp, max_temp): adc_range = [self.adc_convert.calc_adc(t) for t in [min_temp, max_temp]] self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT, minval=min(adc_range), maxval=max(adc_range), range_check_count=RANGE_CHECK_COUNT) ###################################################################### # Linear interpolation ###################################################################### # Helper code to perform linear interpolation class LinearInterpolate: def __init__(self, samples): self.keys = [] self.slopes = [] last_key = last_value = None for key, value in sorted(samples): if last_key is None: last_key = key last_value = value continue if key <= last_key: raise ValueError("duplicate value") gain = (value - last_value) / (key - last_key) offset = last_value - last_key * gain if self.slopes and self.slopes[-1] == (gain, offset): continue last_value = value last_key = key self.keys.append(key) self.slopes.append((gain, offset)) if not self.keys: raise ValueError("need at least two samples") self.keys.append(9999999999999.) self.slopes.append(self.slopes[-1]) def interpolate(self, key): pos = bisect.bisect(self.keys, key) gain, offset = self.slopes[pos] return key * gain + offset def reverse_interpolate(self, value): values = [key * gain + offset for key, (gain, offset) in zip( self.keys, self.slopes)] if values[0] < values[-2]: valid = [i for i in range(len(values)) if values[i] >= value] else: valid = [i for i in range(len(values)) if values[i] <= value] gain, offset = self.slopes[min(valid + [len(values) - 1])] return (value - offset) / gain ###################################################################### # Linear voltage to temperature converter ###################################################################### # Linear style conversion chips calibrated from temperature measurements class LinearVoltage: def __init__(self, config, params): adc_voltage = config.getfloat('adc_voltage', 5., above=0.) samples = [] for temp, volt in params: adc = volt / adc_voltage if adc < 0. or adc > 1.: logging.warn("Ignoring adc sample %.3f/%.3f in heater %s", temp, volt, config.get_name()) continue samples.append((adc, temp)) try: li = LinearInterpolate(samples) except ValueError as e: raise config.error("adc_temperature %s in heater %s" % ( str(e), config.get_name())) self.calc_temp = li.interpolate self.calc_adc = li.reverse_interpolate # Custom defined sensors from the config file class CustomLinearVoltage: def __init__(self, config): self.name = " ".join(config.get_name().split()[1:]) self.params = [] for i in range(1, 1000): t = config.getfloat("temperature%d" % (i,), None) if t is None: break v = config.getfloat("voltage%d" % (i,)) self.params.append((t, v)) def create(self, config): lv = LinearVoltage(config, self.params) return PrinterADCtoTemperature(config, lv) ###################################################################### # Linear resistance to temperature converter ###################################################################### # Linear resistance calibrated from temperature measurements class LinearResistance: def __init__(self, config, samples): self.pullup = config.getfloat('pullup_resistor', 4700., above=0.) try: self.li = LinearInterpolate(samples) except ValueError as e: raise config.error("adc_temperature %s in heater %s" % ( str(e), config.get_name())) def calc_temp(self, adc): # Calculate temperature from adc adc = max(.00001, min(.99999, adc)) r = self.pullup * adc / (1.0 - adc) return self.li.interpolate(r) def calc_adc(self, temp): # Calculate adc reading from a temperature r = self.li.reverse_interpolate(temp) return r / (self.pullup + r) # Custom defined sensors from the config file class CustomLinearResistance: def __init__(self, config): self.name = " ".join(config.get_name().split()[1:]) self.samples = [] for i in range(1, 1000): t = config.getfloat("temperature%d" % (i,), None) if t is None: break r = config.getfloat("resistance%d" % (i,)) self.samples.append((r, t)) def create(self, config): lr = LinearResistance(config, self.samples) return PrinterADCtoTemperature(config, lr) ###################################################################### # Default sensors ###################################################################### AD595 = [ (0., .0027), (10., .101), (20., .200), (25., .250), (30., .300), (40., .401), (50., .503), (60., .605), (80., .810), (100., 1.015), (120., 1.219), (140., 1.420), (160., 1.620), (180., 1.817), (200., 2.015), (220., 2.213), (240., 2.413), (260., 2.614), (280., 2.817), (300., 3.022), (320., 3.227), (340., 3.434), (360., 3.641), (380., 3.849), (400., 4.057), (420., 4.266), (440., 4.476), (460., 4.686), (480., 4.896) ] PT100 = [ (0, 0.00), (1, 1.11), (10, 1.15), (20, 1.20), (30, 1.24), (40, 1.28), (50, 1.32), (60, 1.36), (70, 1.40), (80, 1.44), (90, 1.48), (100, 1.52), (110, 1.56), (120, 1.61), (130, 1.65), (140, 1.68), (150, 1.72), (160, 1.76), (170, 1.80), (180, 1.84), (190, 1.88), (200, 1.92), (210, 1.96), (220, 2.00), (230, 2.04), (240, 2.07), (250, 2.11), (260, 2.15), (270, 2.18), (280, 2.22), (290, 2.26), (300, 2.29), (310, 2.33), (320, 2.37), (330, 2.41), (340, 2.44), (350, 2.48), (360, 2.51), (370, 2.55), (380, 2.58), (390, 2.62), (400, 2.66), (500, 3.00), (600, 3.33), (700, 3.63), (800, 3.93), (900, 4.21), (1000, 4.48), (1100, 4.73) ] def load_config(config): # Register default sensors pheater = config.get_printer().lookup_object("heater") for sensor_type, params in [("AD595", AD595), ("PT100 INA826", PT100)]: func = (lambda config, params=params: PrinterADCtoTemperature(config, LinearVoltage(config, params))) pheater.add_sensor_factory(sensor_type, func) def load_config_prefix(config): if config.get("resistance1", None) is None: custom_sensor = CustomLinearVoltage(config) else: custom_sensor = CustomLinearResistance(config) pheater = config.get_printer().lookup_object("heater") pheater.add_sensor_factory(custom_sensor.name, custom_sensor.create)