# Tools for reading bulk sensor data from the mcu # # Copyright (C) 2020-2023 Kevin O'Connor # # This file may be distributed under the terms of the GNU GPLv3 license. import threading API_UPDATE_INTERVAL = 0.500 # Helper to periodically transmit data to a set of API clients class APIDumpHelper: def __init__(self, printer, data_cb, startstop_cb=None, update_interval=API_UPDATE_INTERVAL): self.printer = printer self.data_cb = data_cb if startstop_cb is None: startstop_cb = (lambda is_start: None) self.startstop_cb = startstop_cb self.is_started = False self.update_interval = update_interval self.update_timer = None self.clients = {} self.webhooks_start_resp = {} # Periodic batch processing def _start(self): if self.is_started: return self.is_started = True try: self.startstop_cb(True) except self.printer.command_error as e: logging.exception("API Dump Helper start callback error") self.is_started = False self.clients.clear() raise reactor = self.printer.get_reactor() systime = reactor.monotonic() waketime = systime + self.update_interval self.update_timer = reactor.register_timer(self._update, waketime) def _stop(self): self.clients.clear() self.printer.get_reactor().unregister_timer(self.update_timer) self.update_timer = None if not self.is_started: return try: self.startstop_cb(False) except self.printer.command_error as e: logging.exception("API Dump Helper stop callback error") self.clients.clear() self.is_started = False if self.clients: # New client started while in process of stopping self._start() def _update(self, eventtime): try: msg = self.data_cb(eventtime) except self.printer.command_error as e: logging.exception("API Dump Helper data callback error") self._stop() return self.printer.get_reactor().NEVER if not msg: return eventtime + self.update_interval for cconn, template in list(self.clients.items()): if cconn.is_closed(): del self.clients[cconn] if not self.clients: self._stop() return self.printer.get_reactor().NEVER continue tmp = dict(template) tmp['params'] = msg cconn.send(tmp) return eventtime + self.update_interval # Internal clients def add_internal_client(self): cconn = InternalDumpClient() self.clients[cconn] = {} self._start() return cconn # Webhooks registration def _add_api_client(self, web_request): cconn = web_request.get_client_connection() template = web_request.get_dict('response_template', {}) self.clients[cconn] = template self._start() web_request.send(self.webhooks_start_resp) def add_mux_endpoint(self, path, key, value, webhooks_start_resp): self.webhooks_start_resp = webhooks_start_resp wh = self.printer.lookup_object('webhooks') wh.register_mux_endpoint(path, key, value, self._add_api_client) # An "internal webhooks" wrapper for using APIDumpHelper internally class InternalDumpClient: def __init__(self): self.msgs = [] self.is_done = False def get_messages(self): return self.msgs def finalize(self): self.is_done = True def is_closed(self): return self.is_done def send(self, msg): self.msgs.append(msg) if len(self.msgs) >= 10000: # Avoid filling up memory with too many samples self.finalize() # Helper class to store incoming messages in a queue class BulkDataQueue: def __init__(self, mcu, msg_name, oid): # Measurement storage (accessed from background thread) self.lock = threading.Lock() self.raw_samples = [] # Register callback with mcu mcu.register_response(self._handle_data, msg_name, oid) def _handle_data(self, params): with self.lock: self.raw_samples.append(params) def pull_samples(self): with self.lock: raw_samples = self.raw_samples self.raw_samples = [] return raw_samples def clear_samples(self): self.pull_samples() # Helper class for chip clock synchronization via linear regression class ClockSyncRegression: def __init__(self, mcu, chip_clock_smooth, decay = 1. / 20.): self.mcu = mcu self.chip_clock_smooth = chip_clock_smooth self.decay = decay self.last_chip_clock = self.last_exp_mcu_clock = 0. self.mcu_clock_avg = self.mcu_clock_variance = 0. self.chip_clock_avg = self.chip_clock_covariance = 0. def reset(self, mcu_clock, chip_clock): self.mcu_clock_avg = self.last_mcu_clock = mcu_clock self.chip_clock_avg = chip_clock self.mcu_clock_variance = self.chip_clock_covariance = 0. self.last_chip_clock = self.last_exp_mcu_clock = 0. def update(self, mcu_clock, chip_clock): # Update linear regression decay = self.decay diff_mcu_clock = mcu_clock - self.mcu_clock_avg self.mcu_clock_avg += decay * diff_mcu_clock self.mcu_clock_variance = (1. - decay) * ( self.mcu_clock_variance + diff_mcu_clock**2 * decay) diff_chip_clock = chip_clock - self.chip_clock_avg self.chip_clock_avg += decay * diff_chip_clock self.chip_clock_covariance = (1. - decay) * ( self.chip_clock_covariance + diff_mcu_clock*diff_chip_clock*decay) def set_last_chip_clock(self, chip_clock): base_mcu, base_chip, inv_cfreq = self.get_clock_translation() self.last_chip_clock = chip_clock self.last_exp_mcu_clock = base_mcu + (chip_clock-base_chip) * inv_cfreq def get_clock_translation(self): inv_chip_freq = self.mcu_clock_variance / self.chip_clock_covariance if not self.last_chip_clock: return self.mcu_clock_avg, self.chip_clock_avg, inv_chip_freq # Find mcu clock associated with future chip_clock s_chip_clock = self.last_chip_clock + self.chip_clock_smooth scdiff = s_chip_clock - self.chip_clock_avg s_mcu_clock = self.mcu_clock_avg + scdiff * inv_chip_freq # Calculate frequency to converge at future point mdiff = s_mcu_clock - self.last_exp_mcu_clock s_inv_chip_freq = mdiff / self.chip_clock_smooth return self.last_exp_mcu_clock, self.last_chip_clock, s_inv_chip_freq def get_time_translation(self): base_mcu, base_chip, inv_cfreq = self.get_clock_translation() clock_to_print_time = self.mcu.clock_to_print_time base_time = clock_to_print_time(base_mcu) inv_freq = clock_to_print_time(base_mcu + inv_cfreq) - base_time return base_time, base_chip, inv_freq MAX_BULK_MSG_SIZE = 52 # Handle common periodic chip status query responses class ChipClockUpdater: def __init__(self, clock_sync, bytes_per_sample): self.clock_sync = clock_sync self.bytes_per_sample = bytes_per_sample self.samples_per_block = MAX_BULK_MSG_SIZE // bytes_per_sample self.mcu = clock_sync.mcu self.last_sequence = self.max_query_duration = 0 self.last_limit_count = 0 def get_last_sequence(self): return self.last_sequence def get_last_limit_count(self): return self.last_limit_count def clear_duration_filter(self): self.max_query_duration = 1 << 31 def note_start(self, reqclock): self.last_sequence = 0 self.last_limit_count = 0 self.clock_sync.reset(reqclock, 0) self.clear_duration_filter() def update_clock(self, params): # Handle a status response message of the form: # adxl345_status oid=x clock=x query_ticks=x next_sequence=x # buffered=x fifo=x limit_count=x fifo = params['fifo'] mcu_clock = self.mcu.clock32_to_clock64(params['clock']) seq_diff = (params['next_sequence'] - self.last_sequence) & 0xffff self.last_sequence += seq_diff buffered = params['buffered'] lc_diff = (params['limit_count'] - self.last_limit_count) & 0xffff self.last_limit_count += lc_diff duration = params['query_ticks'] if duration > self.max_query_duration: # Skip measurement as a high query time could skew clock tracking self.max_query_duration = max(2 * self.max_query_duration, self.mcu.seconds_to_clock(.000005)) return self.max_query_duration = 2 * duration msg_count = (self.last_sequence * self.samples_per_block + buffered // self.bytes_per_sample + fifo) # The "chip clock" is the message counter plus .5 for average # inaccuracy of query responses and plus .5 for assumed offset # of hardware processing time. chip_clock = msg_count + 1 self.clock_sync.update(mcu_clock + duration // 2, chip_clock)