# Printer heater support # # Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net> # # This file may be distributed under the terms of the GNU GPLv3 license. import math, logging, threading # Mapping from name to Steinhart-Hart coefficients Thermistors = { "EPCOS 100K B57560G104F": ( 0.000722136308968056, 0.000216766566488498, 8.92935804531095e-08), "ATC Semitec 104GT-2": ( 0.000809651054275124, 0.000211636030735685, 7.07420883993973e-08), } SAMPLE_TIME = 0.001 SAMPLE_COUNT = 8 REPORT_TIME = 0.300 PWM_CYCLE_TIME = 0.100 KELVIN_TO_CELCIUS = -273.15 MAX_HEAT_TIME = 5.0 AMBIENT_TEMP = 25. PID_PARAM_BASE = 255. class error(Exception): pass class PrinterHeater: error = error def __init__(self, printer, config): self.printer = printer self.config = config self.mcu_pwm = self.mcu_adc = None self.thermistor_c = config.getchoice('thermistor_type', Thermistors) self.pullup_r = config.getfloat('pullup_resistor', 4700.) self.min_extrude_temp = config.getfloat('min_extrude_temp', 170.) self.min_temp = self.config.getfloat('min_temp') self.max_temp = self.config.getfloat('max_temp') self.max_power = max(0., min(1., self.config.getfloat('max_power', 1.))) self.can_extrude = (self.min_extrude_temp <= 0.) self.lock = threading.Lock() self.last_temp = 0. self.last_temp_time = 0. self.target_temp = 0. self.control = None # pwm caching self.next_pwm_time = 0. self.last_pwm_value = 0 def build_config(self): algos = {'watermark': ControlBangBang, 'pid': ControlPID} algo = self.config.getchoice('control', algos) heater_pin = self.config.get('heater_pin') thermistor_pin = self.config.get('thermistor_pin') if algo is ControlBangBang and self.max_power == 1.: self.mcu_pwm = self.printer.mcu.create_digital_out( heater_pin, MAX_HEAT_TIME) else: self.mcu_pwm = self.printer.mcu.create_pwm( heater_pin, PWM_CYCLE_TIME, 0, MAX_HEAT_TIME) self.mcu_adc = self.printer.mcu.create_adc(thermistor_pin) min_adc = self.calc_adc(self.max_temp) max_adc = self.calc_adc(self.min_temp) self.mcu_adc.set_minmax( SAMPLE_TIME, SAMPLE_COUNT, minval=min_adc, maxval=max_adc) self.mcu_adc.set_adc_callback(REPORT_TIME, self.adc_callback) self.control = algo(self, self.config) if self.printer.mcu.is_fileoutput(): self.can_extrude = True def set_pwm(self, read_time, value): if value: if self.target_temp <= 0.: return if (read_time < self.next_pwm_time and abs(value - self.last_pwm_value) < 0.05): return elif not self.last_pwm_value and ( self.target_temp <= 0. or read_time < self.next_pwm_time): return pwm_time = read_time + REPORT_TIME + SAMPLE_TIME*SAMPLE_COUNT self.next_pwm_time = pwm_time + 0.75 * MAX_HEAT_TIME self.last_pwm_value = value logging.debug("%s: pwm=%.3f@%.3f (from %.3f@%.3f [%.3f])" % ( self.config.section, value, pwm_time, self.last_temp, self.last_temp_time, self.target_temp)) self.mcu_pwm.set_pwm(pwm_time, value) # Temperature calculation def calc_temp(self, adc): r = self.pullup_r * adc / (1.0 - adc) ln_r = math.log(r) c1, c2, c3 = self.thermistor_c temp_inv = c1 + c2*ln_r + c3*math.pow(ln_r, 3) return 1.0/temp_inv + KELVIN_TO_CELCIUS def calc_adc(self, temp): if temp is None: return None c1, c2, c3 = self.thermistor_c temp -= KELVIN_TO_CELCIUS temp_inv = 1./temp y = (c1 - temp_inv) / (2*c3) x = math.sqrt(math.pow(c2 / (3.*c3), 3.) + math.pow(y, 2.)) r = math.exp(math.pow(x-y, 1./3.) - math.pow(x+y, 1./3.)) return r / (self.pullup_r + r) def adc_callback(self, read_time, read_value): temp = self.calc_temp(read_value) with self.lock: self.last_temp = temp self.last_temp_time = read_time self.can_extrude = (temp >= self.min_extrude_temp) self.control.adc_callback(read_time, temp) #logging.debug("temp: %.3f %f = %f" % (read_time, read_value, temp)) # External commands def set_temp(self, print_time, degrees): if degrees and (degrees < self.min_temp or degrees > self.max_temp): raise error("Requested temperature (%.1f) out of range (%.1f:%.1f)" % (degrees, self.min_temp, self.max_temp)) with self.lock: self.target_temp = degrees def get_temp(self): with self.lock: return self.last_temp, self.target_temp def check_busy(self, eventtime): with self.lock: return self.control.check_busy(eventtime) def start_auto_tune(self, temp): with self.lock: self.control = ControlAutoTune(self, self.control, temp) ###################################################################### # Bang-bang control algo ###################################################################### class ControlBangBang: def __init__(self, heater, config): self.heater = heater self.max_delta = config.getfloat('max_delta', 2.0) self.heating = False def adc_callback(self, read_time, temp): if self.heating and temp >= self.heater.target_temp+self.max_delta: self.heating = False elif not self.heating and temp <= self.heater.target_temp-self.max_delta: self.heating = True if self.heating: self.heater.set_pwm(read_time, self.heater.max_power) else: self.heater.set_pwm(read_time, 0.) def check_busy(self, eventtime): return self.heater.last_temp < self.heater.target_temp-self.max_delta ###################################################################### # Proportional Integral Derivative (PID) control algo ###################################################################### class ControlPID: def __init__(self, heater, config): self.heater = heater self.Kp = config.getfloat('pid_Kp') / PID_PARAM_BASE self.Ki = config.getfloat('pid_Ki') / PID_PARAM_BASE self.Kd = config.getfloat('pid_Kd') / PID_PARAM_BASE self.min_deriv_time = config.getfloat('pid_deriv_time', 2.) imax = config.getfloat('pid_integral_max', heater.max_power) self.temp_integ_max = imax / self.Ki self.prev_temp = AMBIENT_TEMP self.prev_temp_time = 0. self.prev_temp_deriv = 0. self.prev_temp_integ = 0. def adc_callback(self, read_time, temp): time_diff = read_time - self.prev_temp_time # Calculate change of temperature temp_diff = temp - self.prev_temp if time_diff >= self.min_deriv_time: temp_deriv = temp_diff / time_diff else: temp_deriv = (self.prev_temp_deriv * (self.min_deriv_time-time_diff) + temp_diff) / self.min_deriv_time # Calculate accumulated temperature "error" temp_err = self.heater.target_temp - temp temp_integ = self.prev_temp_integ + temp_err * time_diff temp_integ = max(0., min(self.temp_integ_max, temp_integ)) # Calculate output co = self.Kp*temp_err + self.Ki*temp_integ - self.Kd*temp_deriv #logging.debug("pid: %f@%.3f -> diff=%f deriv=%f err=%f integ=%f co=%d" % ( # temp, read_time, temp_diff, temp_deriv, temp_err, temp_integ, co)) bounded_co = max(0., min(self.heater.max_power, co)) self.heater.set_pwm(read_time, bounded_co) # Store state for next measurement self.prev_temp = temp self.prev_temp_time = read_time self.prev_temp_deriv = temp_deriv if co == bounded_co: self.prev_temp_integ = temp_integ def check_busy(self, eventtime): temp_diff = self.heater.target_temp - self.heater.last_temp return abs(temp_diff) > 1. or abs(self.prev_temp_deriv) > 0.1 ###################################################################### # Ziegler-Nichols PID autotuning ###################################################################### TUNE_PID_DELTA = 5.0 class ControlAutoTune: def __init__(self, heater, old_control, target_temp): self.heater = heater self.old_control = old_control self.target_temp = target_temp self.heating = False self.peaks = [] self.peak = 0. self.peak_time = 0. def adc_callback(self, read_time, temp): if self.heating and temp >= self.target_temp: self.heating = False self.check_peaks() elif not self.heating and temp <= self.target_temp - TUNE_PID_DELTA: self.heating = True self.check_peaks() if self.heating: self.heater.set_pwm(read_time, self.heater.max_power) if temp < self.peak: self.peak = temp self.peak_time = read_time else: self.heater.set_pwm(read_time, 0.) if temp > self.peak: self.peak = temp self.peak_time = read_time def check_peaks(self): self.peaks.append((self.peak, self.peak_time)) if self.heating: self.peak = 9999999. else: self.peak = -9999999. if len(self.peaks) < 4: return temp_diff = self.peaks[-1][0] - self.peaks[-2][0] time_diff = self.peaks[-1][1] - self.peaks[-3][1] max_power = self.heater.max_power Ku = 4. * (2. * max_power) / (abs(temp_diff) * math.pi) Tu = time_diff Kp = 0.6 * Ku Ti = 0.5 * Tu Td = 0.125 * Tu Ki = Kp / Ti Kd = Kp * Td logging.info("Autotune: raw=%f/%f Ku=%f Tu=%f Kp=%f Ki=%f Kd=%f" % ( temp_diff, max_power, Ku, Tu, Kp * PID_PARAM_BASE, Ki * PID_PARAM_BASE, Kd * PID_PARAM_BASE)) def check_busy(self, eventtime): if self.heating or len(self.peaks) < 12: return True self.heater.control = self.old_control return False ###################################################################### # Tuning information test ###################################################################### class ControlBumpTest: def __init__(self, heater, old_control, target_temp): self.heater = heater self.old_control = old_control self.target_temp = target_temp self.temp_samples = {} self.pwm_samples = {} self.state = 0 def set_pwm(self, read_time, value): self.pwm_samples[read_time + 2*REPORT_TIME] = value self.heater.set_pwm(read_time, value) def adc_callback(self, read_time, temp): self.temp_samples[read_time] = temp if not self.state: self.set_pwm(read_time, 0.) if len(self.temp_samples) >= 20: self.state += 1 elif self.state == 1: if temp < self.target_temp: self.set_pwm(read_time, self.heater.max_power) return self.set_pwm(read_time, 0.) self.state += 1 elif self.state == 2: self.set_pwm(read_time, 0.) if temp <= (self.target_temp + AMBIENT_TEMP) / 2.: self.dump_stats() self.state += 1 def dump_stats(self): out = ["%.3f %.1f %d" % (time, temp, self.pwm_samples.get(time, -1.)) for time, temp in sorted(self.temp_samples.items())] f = open("/tmp/heattest.txt", "wb") f.write('\n'.join(out)) f.close() def check_busy(self, eventtime): if self.state < 3: return True self.heater.control = self.old_control return False