# Mechanicaly conforms a moving gantry to the bed with 4 Z steppers # # Copyright (C) 2018 Maks Zolin <mzolin@vorondesign.com> # # This file may be distributed under the terms of the GNU GPLv3 license. import logging from . import probe, z_tilt # Leveling code for XY rails that are controlled by Z steppers as in: # # Z stepper1 ----> O O <---- Z stepper2 # | * <-- probe1 probe2 --> * | # | | # | | <--- Y2 rail # Y1 rail -----> | | # | | # |=============================| # | ^ | # | | | # | X rail --/ | # | | # | * <-- probe0 probe3 --> * | # Z stepper0 ----> O O <---- Z stepper3 class QuadGantryLevel: def __init__(self, config): self.printer = config.get_printer() self.retry_helper = z_tilt.RetryHelper(config, "Possibly Z motor numbering is wrong") self.max_adjust = config.getfloat("max_adjust", 4, above=0) self.horizontal_move_z = config.getfloat("horizontal_move_z", 5.0) self.probe_helper = probe.ProbePointsHelper(config, self.probe_finalize) if len(self.probe_helper.probe_points) != 4: raise config.error( "Need exactly 4 probe points for quad_gantry_level") self.z_status = z_tilt.ZAdjustStatus(self.printer) self.z_helper = z_tilt.ZAdjustHelper(config, 4) self.gantry_corners = config.getlists('gantry_corners', parser=float, seps=(',', '\n'), count=2) if len(self.gantry_corners) < 2: raise config.error( "quad_gantry_level requires at least two gantry_corners") # Register QUAD_GANTRY_LEVEL command self.gcode = self.printer.lookup_object('gcode') self.gcode.register_command( 'QUAD_GANTRY_LEVEL', self.cmd_QUAD_GANTRY_LEVEL, desc=self.cmd_QUAD_GANTRY_LEVEL_help) cmd_QUAD_GANTRY_LEVEL_help = ( "Conform a moving, twistable gantry to the shape of a stationary bed") def cmd_QUAD_GANTRY_LEVEL(self, gcmd): self.z_status.reset() self.retry_helper.start(gcmd) self.probe_helper.start_probe(gcmd) def probe_finalize(self, offsets, positions): # Mirror our perspective so the adjustments make sense # from the perspective of the gantry z_positions = [self.horizontal_move_z - p[2] for p in positions] points_message = "Gantry-relative probe points:\n%s\n" % ( " ".join(["%s: %.6f" % (z_id, z_positions[z_id]) for z_id in range(len(z_positions))])) self.gcode.respond_info(points_message) # Calculate slope along X axis between probe point 0 and 3 ppx0 = [positions[0][0] + offsets[0], z_positions[0]] ppx3 = [positions[3][0] + offsets[0], z_positions[3]] slope_x_pp03 = self.linefit(ppx0, ppx3) # Calculate slope along X axis between probe point 1 and 2 ppx1 = [positions[1][0] + offsets[0], z_positions[1]] ppx2 = [positions[2][0] + offsets[0], z_positions[2]] slope_x_pp12 = self.linefit(ppx1, ppx2) logging.info("quad_gantry_level f1: %s, f2: %s" % (slope_x_pp03, slope_x_pp12)) # Calculate gantry slope along Y axis between stepper 0 and 1 a1 = [positions[0][1] + offsets[1], self.plot(slope_x_pp03, self.gantry_corners[0][0])] a2 = [positions[1][1] + offsets[1], self.plot(slope_x_pp12, self.gantry_corners[0][0])] slope_y_s01 = self.linefit(a1, a2) # Calculate gantry slope along Y axis between stepper 2 and 3 b1 = [positions[0][1] + offsets[1], self.plot(slope_x_pp03, self.gantry_corners[1][0])] b2 = [positions[1][1] + offsets[1], self.plot(slope_x_pp12, self.gantry_corners[1][0])] slope_y_s23 = self.linefit(b1, b2) logging.info("quad_gantry_level af: %s, bf: %s" % (slope_y_s01, slope_y_s23)) # Calculate z height of each stepper z_height = [0,0,0,0] z_height[0] = self.plot(slope_y_s01, self.gantry_corners[0][1]) z_height[1] = self.plot(slope_y_s01, self.gantry_corners[1][1]) z_height[2] = self.plot(slope_y_s23, self.gantry_corners[1][1]) z_height[3] = self.plot(slope_y_s23, self.gantry_corners[0][1]) ainfo = zip(["z","z1","z2","z3"], z_height[0:4]) apos = " ".join(["%s: %06f" % (x) for x in ainfo]) self.gcode.respond_info("Actuator Positions:\n" + apos) z_ave = sum(z_height) / len(z_height) self.gcode.respond_info("Average: %0.6f" % z_ave) z_adjust = [] for z in z_height: z_adjust.append(z_ave - z) adjust_max = max(z_adjust) if adjust_max > self.max_adjust: raise self.gcode.error("Aborting quad_gantry_level" " required adjustment %0.6f" " is greater than max_adjust %0.6f" % (adjust_max, self.max_adjust)) speed = self.probe_helper.get_lift_speed() self.z_helper.adjust_steppers(z_adjust, speed) return self.z_status.check_retry_result( self.retry_helper.check_retry(z_positions)) def linefit(self,p1,p2): if p1[1] == p2[1]: # Straight line return 0,p1[1] m = (p2[1] - p1[1])/(p2[0] - p1[0]) b = p1[1] - m * p1[0] return m,b def plot(self,f,x): return f[0]*x + f[1] def get_status(self, eventtime): return self.z_status.get_status(eventtime) def load_config(config): return QuadGantryLevel(config)