# adds support fro ARC commands via G2/G3 # # Copyright (C) 2019 Aleksej Vasiljkovic <achmed21@gmail.com> # # function planArc() originates from https://github.com/MarlinFirmware/Marlin # Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm # # This file may be distributed under the terms of the GNU GPLv3 license. import math # Coordinates created by this are converted into G1 commands. # # note: only IJ version available class ArcSupport: def __init__(self, config): self.printer = config.get_printer() self.mm_per_arc_segment = config.getfloat('resolution', 1., above=0.0) self.gcode = self.printer.lookup_object('gcode') self.gcode.register_command("G2", self.cmd_G2) self.gcode.register_command("G3", self.cmd_G2) def cmd_G2(self, gcmd): gcodestatus = self.gcode.get_status() if not gcodestatus['absolute_coordinates']: raise self.gcode.error("G2/G3 does not support relative move mode") currentPos = gcodestatus['gcode_position'] # Parse parameters asX = gcmd.get_float("X", currentPos[0]) asY = gcmd.get_float("Y", currentPos[1]) asZ = gcmd.get_float("Z", currentPos[2]) if gcmd.get_float("R", None) is not None: raise gcmd.error("G2/G3 does not support R moves") asI = gcmd.get_float("I", 0.) asJ = gcmd.get_float("J", 0.) if not asI and not asJ: raise gcmd.error("G2/G3 neither I nor J given") asE = gcmd.get_float("E", None) asF = gcmd.get_float("F", None) clockwise = (gcmd.get_command() == 'G2') # Build list of linear coordinates to move to coords = self.planArc(currentPos, [asX, asY, asZ], [asI, asJ], clockwise) e_per_move = e_base = 0. if asE is not None: if gcodestatus['absolute_extrude']: e_base = currentPos[3] e_per_move = (asE - e_base) / len(coords) # Convert coords into G1 commands for coord in coords: g1_params = {'X': coord[0], 'Y': coord[1], 'Z': coord[2]} if e_per_move: g1_params['E'] = e_base + e_per_move if asF is not None: g1_params['F'] = asF g1_gcmd = self.gcode.create_gcode_command("G1", "G1", g1_params) self.gcode.cmd_G1(g1_gcmd) # function planArc() originates from marlin plan_arc() # https://github.com/MarlinFirmware/Marlin # # The arc is approximated by generating many small linear segments. # The length of each segment is configured in MM_PER_ARC_SEGMENT # Arcs smaller then this value, will be a Line only def planArc(self, currentPos, targetPos, offset, clockwise): # todo: sometimes produces full circles X_AXIS = 0 Y_AXIS = 1 Z_AXIS = 2 # Radius vector from center to current location r_P = -offset[0] r_Q = -offset[1] # Determine angular travel center_P = currentPos[X_AXIS] - r_P center_Q = currentPos[Y_AXIS] - r_Q rt_X = targetPos[X_AXIS] - center_P rt_Y = targetPos[Y_AXIS] - center_Q angular_travel = math.atan2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y) if angular_travel < 0.: angular_travel += 2. * math.pi if clockwise: angular_travel -= 2. * math.pi if (angular_travel == 0. and currentPos[X_AXIS] == targetPos[X_AXIS] and currentPos[Y_AXIS] == targetPos[Y_AXIS]): # Make a circle if the angular rotation is 0 and the # target is current position angular_travel = 2. * math.pi # Determine number of segments linear_travel = targetPos[Z_AXIS] - currentPos[Z_AXIS] radius = math.hypot(r_P, r_Q) flat_mm = radius * angular_travel if linear_travel: mm_of_travel = math.hypot(flat_mm, linear_travel) else: mm_of_travel = math.fabs(flat_mm) segments = max(1., math.floor(mm_of_travel / self.mm_per_arc_segment)) # Generate coordinates theta_per_segment = angular_travel / segments linear_per_segment = linear_travel / segments coords = [] for i in range(1, int(segments)): dist_Z = i * linear_per_segment cos_Ti = math.cos(i * theta_per_segment) sin_Ti = math.sin(i * theta_per_segment) r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti c = [center_P + r_P, center_Q + r_Q, currentPos[Z_AXIS] + dist_Z] coords.append(c) coords.append(targetPos) return coords def load_config(config): return ArcSupport(config)