#!/usr/bin/env python # Script to plot input shapers # # Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net> # Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com> # # This file may be distributed under the terms of the GNU GPLv3 license. import optparse, math import matplotlib # A set of damping ratios to calculate shaper response for DAMPING_RATIOS=[0.05, 0.1, 0.2] # Parameters of the input shaper SHAPER_FREQ=50.0 SHAPER_DAMPING_RATIO=0.1 # Simulate input shaping of step function for these true resonance frequency # and damping ratio STEP_SIMULATION_RESONANCE_FREQ=60. STEP_SIMULATION_DAMPING_RATIO=0.15 # If set, defines which range of frequencies to plot shaper frequency responce PLOT_FREQ_RANGE = [] # If empty, will be automatically determined #PLOT_FREQ_RANGE = [10., 100.] PLOT_FREQ_STEP = .01 ###################################################################### # Input shapers ###################################################################### def get_zv_shaper(): df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) t_d = 1. / (SHAPER_FREQ * df) A = [1., K] T = [0., .5*t_d] return (A, T, "ZV") def get_zvd_shaper(): df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) t_d = 1. / (SHAPER_FREQ * df) A = [1., 2.*K, K**2] T = [0., .5*t_d, t_d] return (A, T, "ZVD") def get_mzv_shaper(): df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) K = math.exp(-.75 * SHAPER_DAMPING_RATIO * math.pi / df) t_d = 1. / (SHAPER_FREQ * df) a1 = 1. - 1. / math.sqrt(2.) a2 = (math.sqrt(2.) - 1.) * K a3 = a1 * K * K A = [a1, a2, a3] T = [0., .375*t_d, .75*t_d] return (A, T, "MZV") def get_ei_shaper(): v_tol = 0.05 # vibration tolerance df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) t_d = 1. / (SHAPER_FREQ * df) a1 = .25 * (1. + v_tol) a2 = .5 * (1. - v_tol) * K a3 = a1 * K * K A = [a1, a2, a3] T = [0., .5*t_d, t_d] return (A, T, "EI") def get_2hump_ei_shaper(): v_tol = 0.05 # vibration tolerance df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) t_d = 1. / (SHAPER_FREQ * df) V2 = v_tol**2 X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.) a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X) a2 = (.5 - a1) * K a3 = a2 * K a4 = a1 * K * K * K A = [a1, a2, a3, a4] T = [0., .5*t_d, t_d, 1.5*t_d] return (A, T, "2-hump EI") def get_3hump_ei_shaper(): v_tol = 0.05 # vibration tolerance df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) t_d = 1. / (SHAPER_FREQ * df) K2 = K*K a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol)) a2 = 0.25 * (1. - v_tol) * K a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2 a4 = a2 * K2 a5 = a1 * K2 * K2 A = [a1, a2, a3, a4, a5] T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d] return (A, T, "3-hump EI") def estimate_shaper(shaper, freq, damping_ratio): A, T, _ = shaper n = len(T) inv_D = 1. / sum(A) omega = 2. * math.pi * freq damping = damping_ratio * omega omega_d = omega * math.sqrt(1. - damping_ratio**2) S = C = 0 for i in range(n): W = A[i] * math.exp(-damping * (T[-1] - T[i])) S += W * math.sin(omega_d * T[i]) C += W * math.cos(omega_d * T[i]) return math.sqrt(S*S + C*C) * inv_D def shift_pulses(shaper): A, T, name = shaper n = len(T) ts = sum([A[i] * T[i] for i in range(n)]) / sum(A) for i in range(n): T[i] -= ts # Shaper selection get_shaper = get_ei_shaper ###################################################################### # Plotting and startup ###################################################################### def bisect(func, left, right): lhs_sign = math.copysign(1., func(left)) while right-left > 1e-8: mid = .5 * (left + right) val = func(mid) if math.copysign(1., val) == lhs_sign: left = mid else: right = mid return .5 * (left + right) def find_shaper_plot_range(shaper, vib_tol): def eval_shaper(freq): return estimate_shaper(shaper, freq, DAMPING_RATIOS[0]) - vib_tol if not PLOT_FREQ_RANGE: left = bisect(eval_shaper, 0., SHAPER_FREQ) right = bisect(eval_shaper, SHAPER_FREQ, 2.4 * SHAPER_FREQ) else: left, right = PLOT_FREQ_RANGE return (left, right) def gen_shaper_response(shaper): # Calculate shaper vibration responce on a range of requencies response = [] freqs = [] freq, freq_end = find_shaper_plot_range(shaper, vib_tol=0.25) while freq <= freq_end: vals = [] for damping_ratio in DAMPING_RATIOS: vals.append(estimate_shaper(shaper, freq, damping_ratio)) response.append(vals) freqs.append(freq) freq += PLOT_FREQ_STEP legend = ['damping ratio = %.3f' % d_r for d_r in DAMPING_RATIOS] return freqs, response, legend def gen_shaped_step_function(shaper): # Calculate shaping of a step function A, T, _ = shaper inv_D = 1. / sum(A) n = len(T) omega = 2. * math.pi * STEP_SIMULATION_RESONANCE_FREQ damping = STEP_SIMULATION_DAMPING_RATIO * omega omega_d = omega * math.sqrt(1. - STEP_SIMULATION_DAMPING_RATIO**2) phase = math.acos(STEP_SIMULATION_DAMPING_RATIO) t_start = T[0] - .5 / SHAPER_FREQ t_end = T[-1] + 1.5 / STEP_SIMULATION_RESONANCE_FREQ result = [] time = [] t = t_start def step_response(t): if t < 0.: return 0. return 1. - math.exp(-damping * t) * math.sin(omega_d * t + phase) / math.sin(phase) while t <= t_end: val = [] val.append(1. if t >= 0. else 0.) #val.append(step_response(t)) commanded = 0. response = 0. S = C = 0 for i in range(n): if t < T[i]: continue commanded += A[i] response += A[i] * step_response(t - T[i]) val.append(commanded * inv_D) val.append(response * inv_D) result.append(val) time.append(t) t += .01 / SHAPER_FREQ legend = ['step', 'shaper commanded', 'system response'] return time, result, legend def plot_shaper(shaper): shift_pulses(shaper) freqs, response, response_legend = gen_shaper_response(shaper) time, step_vals, step_legend = gen_shaped_step_function(shaper) fig, (ax1, ax2) = matplotlib.pyplot.subplots(nrows=2, figsize=(10,9)) ax1.set_title("Vibration response simulation for shaper '%s',\n" "shaper_freq=%.1f Hz, damping_ratio=%.3f" % (shaper[-1], SHAPER_FREQ, SHAPER_DAMPING_RATIO)) ax1.plot(freqs, response) ax1.set_ylim(bottom=0.) fontP = matplotlib.font_manager.FontProperties() fontP.set_size('x-small') ax1.legend(response_legend, loc='best', prop=fontP) ax1.set_xlabel('Resonance frequency, Hz') ax1.set_ylabel('Remaining vibrations, ratio') ax1.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) ax1.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) ax1.grid(which='major', color='grey') ax1.grid(which='minor', color='lightgrey') ax2.set_title("Unit step input, resonance frequency=%.1f Hz, " "damping ratio=%.3f" % (STEP_SIMULATION_RESONANCE_FREQ, STEP_SIMULATION_DAMPING_RATIO)) ax2.plot(time, step_vals) ax2.legend(step_legend, loc='best', prop=fontP) ax2.set_xlabel('Time, sec') ax2.set_ylabel('Amplitude') ax2.grid() fig.tight_layout() return fig def setup_matplotlib(output_to_file): global matplotlib if output_to_file: matplotlib.use('Agg') import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager import matplotlib.ticker def main(): # Parse command-line arguments usage = "%prog [options]" opts = optparse.OptionParser(usage) opts.add_option("-o", "--output", type="string", dest="output", default=None, help="filename of output graph") options, args = opts.parse_args() if len(args) != 0: opts.error("Incorrect number of arguments") # Draw graph setup_matplotlib(options.output is not None) fig = plot_shaper(get_shaper()) # Show graph if options.output is None: matplotlib.pyplot.show() else: fig.set_size_inches(8, 6) fig.savefig(options.output) if __name__ == '__main__': main()