delta: Move "stable position" logic to delta_calibrate.py
Move the "stable position" logic from the delta.py kinematics code to the delta_calibrate.py calibration code. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
parent
d48e8ea162
commit
ed0882dc10
|
@ -3,9 +3,64 @@
|
||||||
# Copyright (C) 2017-2018 Kevin O'Connor <kevin@koconnor.net>
|
# Copyright (C) 2017-2018 Kevin O'Connor <kevin@koconnor.net>
|
||||||
#
|
#
|
||||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||||
import math, logging
|
import math, logging, collections
|
||||||
import probe, mathutil
|
import probe, mathutil
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
# Delta "stable position" coordinates
|
||||||
|
######################################################################
|
||||||
|
|
||||||
|
# A "stable position" is a 3-tuple containing the number of steps
|
||||||
|
# taken since hitting the endstop on each delta tower. Delta
|
||||||
|
# calibration uses this coordinate system because it allows a position
|
||||||
|
# to be described independent of the software parameters.
|
||||||
|
|
||||||
|
# Storage helper for delta parameters
|
||||||
|
DeltaParams = collections.namedtuple('DeltaParams', [
|
||||||
|
'radius', 'angles', 'arms', 'endstops', 'stepdists',
|
||||||
|
'towers', 'abs_endstops'])
|
||||||
|
|
||||||
|
# Generate delta_params from delta configuration parameters
|
||||||
|
def build_delta_params(params):
|
||||||
|
radius = params['radius']
|
||||||
|
angles = [params['angle_'+a] for a in 'abc']
|
||||||
|
arms = [params['arm_'+a] for a in 'abc']
|
||||||
|
endstops = [params['endstop_'+a] for a in 'abc']
|
||||||
|
stepdists = [params['stepdist_'+a] for a in 'abc']
|
||||||
|
# Calculate the XY cartesian coordinates of the delta towers
|
||||||
|
radian_angles = [math.radians(a) for a in angles]
|
||||||
|
towers = [(math.cos(a) * radius, math.sin(a) * radius)
|
||||||
|
for a in radian_angles]
|
||||||
|
# Calculate the absolute Z height of each tower endstop
|
||||||
|
radius2 = radius**2
|
||||||
|
abs_endstops = [e + math.sqrt(a**2 - radius2)
|
||||||
|
for e, a in zip(endstops, arms)]
|
||||||
|
return DeltaParams(radius, angles, arms, endstops, stepdists,
|
||||||
|
towers, abs_endstops)
|
||||||
|
|
||||||
|
# Return cartesian coordinates for the given stable_positions when the
|
||||||
|
# given delta_params are used.
|
||||||
|
def get_position_from_stable(stable_position, delta_params):
|
||||||
|
dp = delta_params
|
||||||
|
sphere_coords = [
|
||||||
|
(t[0], t[1], es - sp * sd)
|
||||||
|
for sd, t, es, sp in zip(
|
||||||
|
dp.stepdists, dp.towers, dp.abs_endstops, stable_position) ]
|
||||||
|
return mathutil.trilateration(sphere_coords, [a**2 for a in dp.arms])
|
||||||
|
|
||||||
|
# Return a stable position from the nominal delta tower positions
|
||||||
|
def get_stable_position(stepper_position, delta_params):
|
||||||
|
dp = delta_params
|
||||||
|
return [int((ep - sp) / sd + .5)
|
||||||
|
for sd, ep, sp in zip(
|
||||||
|
dp.stepdists, dp.abs_endstops, stepper_position)]
|
||||||
|
|
||||||
|
|
||||||
|
######################################################################
|
||||||
|
# Delta Calibrate class
|
||||||
|
######################################################################
|
||||||
|
|
||||||
class DeltaCalibrate:
|
class DeltaCalibrate:
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
self.printer = config.get_printer()
|
self.printer = config.get_printer()
|
||||||
|
@ -32,27 +87,34 @@ class DeltaCalibrate:
|
||||||
self.probe_helper.start_probe()
|
self.probe_helper.start_probe()
|
||||||
def get_probed_position(self):
|
def get_probed_position(self):
|
||||||
kin = self.printer.lookup_object('toolhead').get_kinematics()
|
kin = self.printer.lookup_object('toolhead').get_kinematics()
|
||||||
return kin.get_stable_position()
|
return [s.get_commanded_position() for s in kin.get_steppers()]
|
||||||
def finalize(self, offsets, positions):
|
def finalize(self, offsets, positions):
|
||||||
z_offset = offsets[2]
|
z_offset = offsets[2]
|
||||||
kin = self.printer.lookup_object('toolhead').get_kinematics()
|
kin = self.printer.lookup_object('toolhead').get_kinematics()
|
||||||
logging.info("Calculating delta_calibrate with: %s", positions)
|
|
||||||
params = kin.get_calibrate_params()
|
params = kin.get_calibrate_params()
|
||||||
logging.info("Initial delta_calibrate parameters: %s", params)
|
orig_delta_params = build_delta_params(params)
|
||||||
adj_params = ('endstop_a', 'endstop_b', 'endstop_c', 'radius',
|
stable_positions = [get_stable_position(p, orig_delta_params)
|
||||||
'angle_a', 'angle_b')
|
for p in positions]
|
||||||
|
logging.info("Calculating delta_calibrate with: %s\n"
|
||||||
|
"Initial delta_calibrate parameters: %s",
|
||||||
|
stable_positions, params)
|
||||||
|
adj_params = ('radius', 'angle_a', 'angle_b',
|
||||||
|
'endstop_a', 'endstop_b', 'endstop_c')
|
||||||
def delta_errorfunc(params):
|
def delta_errorfunc(params):
|
||||||
|
delta_params = build_delta_params(params)
|
||||||
total_error = 0.
|
total_error = 0.
|
||||||
for x, y, z in kin.get_positions_from_stable(positions, params):
|
for stable_pos in stable_positions:
|
||||||
|
x, y, z = get_position_from_stable(stable_pos, delta_params)
|
||||||
total_error += (z - z_offset)**2
|
total_error += (z - z_offset)**2
|
||||||
return total_error
|
return total_error
|
||||||
new_params = mathutil.coordinate_descent(
|
new_params = mathutil.coordinate_descent(
|
||||||
adj_params, params, delta_errorfunc)
|
adj_params, params, delta_errorfunc)
|
||||||
logging.info("Calculated delta_calibrate parameters: %s", new_params)
|
logging.info("Calculated delta_calibrate parameters: %s", new_params)
|
||||||
old_positions = kin.get_positions_from_stable(positions, params)
|
new_delta_params = build_delta_params(new_params)
|
||||||
new_positions = kin.get_positions_from_stable(positions, new_params)
|
for spos in stable_positions:
|
||||||
for oldpos, newpos in zip(old_positions, new_positions):
|
logging.info("orig: %s new: %s",
|
||||||
logging.info("orig: %s new: %s", oldpos, newpos)
|
get_position_from_stable(spos, orig_delta_params),
|
||||||
|
get_position_from_stable(spos, new_delta_params))
|
||||||
self.gcode.respond_info(
|
self.gcode.respond_info(
|
||||||
"stepper_a: position_endstop: %.6f angle: %.6f\n"
|
"stepper_a: position_endstop: %.6f angle: %.6f\n"
|
||||||
"stepper_b: position_endstop: %.6f angle: %.6f\n"
|
"stepper_b: position_endstop: %.6f angle: %.6f\n"
|
||||||
|
|
|
@ -12,8 +12,7 @@ SLOW_RATIO = 3.
|
||||||
class DeltaKinematics:
|
class DeltaKinematics:
|
||||||
def __init__(self, toolhead, config):
|
def __init__(self, toolhead, config):
|
||||||
# Setup tower rails
|
# Setup tower rails
|
||||||
stepper_configs = [config.getsection('stepper_' + n)
|
stepper_configs = [config.getsection('stepper_' + a) for a in 'abc']
|
||||||
for n in ['a', 'b', 'c']]
|
|
||||||
rail_a = stepper.PrinterRail(
|
rail_a = stepper.PrinterRail(
|
||||||
stepper_configs[0], need_position_minmax = False)
|
stepper_configs[0], need_position_minmax = False)
|
||||||
a_endstop = rail_a.get_homing_info().position_endstop
|
a_endstop = rail_a.get_homing_info().position_endstop
|
||||||
|
@ -31,7 +30,7 @@ class DeltaKinematics:
|
||||||
sconfig.getfloat('arm_length', arm_length_a, above=radius)
|
sconfig.getfloat('arm_length', arm_length_a, above=radius)
|
||||||
for sconfig in stepper_configs]
|
for sconfig in stepper_configs]
|
||||||
self.arm2 = [arm**2 for arm in arm_lengths]
|
self.arm2 = [arm**2 for arm in arm_lengths]
|
||||||
self.endstops = [(rail.get_homing_info().position_endstop
|
self.abs_endstops = [(rail.get_homing_info().position_endstop
|
||||||
+ math.sqrt(arm2 - radius**2))
|
+ math.sqrt(arm2 - radius**2))
|
||||||
for rail, arm2 in zip(self.rails, self.arm2)]
|
for rail, arm2 in zip(self.rails, self.arm2)]
|
||||||
# Setup boundary checks
|
# Setup boundary checks
|
||||||
|
@ -41,7 +40,7 @@ class DeltaKinematics:
|
||||||
for rail in self.rails])
|
for rail in self.rails])
|
||||||
self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
|
self.min_z = config.getfloat('minimum_z_position', 0, maxval=self.max_z)
|
||||||
self.limit_z = min([ep - arm
|
self.limit_z = min([ep - arm
|
||||||
for ep, arm in zip(self.endstops, arm_lengths)])
|
for ep, arm in zip(self.abs_endstops, arm_lengths)])
|
||||||
logging.info(
|
logging.info(
|
||||||
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
|
"Delta max build height %.2fmm (radius tapered above %.2fmm)" % (
|
||||||
self.max_z, self.limit_z))
|
self.max_z, self.limit_z))
|
||||||
|
@ -115,7 +114,7 @@ class DeltaKinematics:
|
||||||
homing_speed/2.0, second_home=True)
|
homing_speed/2.0, second_home=True)
|
||||||
# Set final homed position
|
# Set final homed position
|
||||||
spos = [ep + rail.get_homed_offset()
|
spos = [ep + rail.get_homed_offset()
|
||||||
for ep, rail in zip(self.endstops, self.rails)]
|
for ep, rail in zip(self.abs_endstops, self.rails)]
|
||||||
homing_state.set_homed_position(self._actuator_to_cartesian(spos))
|
homing_state.set_homed_position(self._actuator_to_cartesian(spos))
|
||||||
def motor_off(self, print_time):
|
def motor_off(self, print_time):
|
||||||
self.limit_xy2 = -1.
|
self.limit_xy2 = -1.
|
||||||
|
@ -160,38 +159,15 @@ class DeltaKinematics:
|
||||||
self._check_motor_enable(print_time)
|
self._check_motor_enable(print_time)
|
||||||
for rail in self.rails:
|
for rail in self.rails:
|
||||||
rail.step_itersolve(move.cmove)
|
rail.step_itersolve(move.cmove)
|
||||||
# Helper functions for DELTA_CALIBRATE script
|
# Helper function for DELTA_CALIBRATE script
|
||||||
def get_stable_position(self):
|
|
||||||
steppers = [rail.get_steppers()[0] for rail in self.rails]
|
|
||||||
return [int((ep - s.get_commanded_position()) / s.get_step_dist() + .5)
|
|
||||||
for ep, s in zip(self.endstops, steppers)]
|
|
||||||
def get_calibrate_params(self):
|
def get_calibrate_params(self):
|
||||||
out = { 'radius': self.radius }
|
out = { 'radius': self.radius }
|
||||||
for i, axis in enumerate('abc'):
|
for i, axis in enumerate('abc'):
|
||||||
rail = self.rails[i]
|
rail = self.rails[i]
|
||||||
out['endstop_'+axis] = rail.get_homing_info().position_endstop
|
|
||||||
out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
|
|
||||||
out['angle_'+axis] = self.angles[i]
|
out['angle_'+axis] = self.angles[i]
|
||||||
out['arm_'+axis] = self.arm_lengths[i]
|
out['arm_'+axis] = self.arm_lengths[i]
|
||||||
return out
|
out['endstop_'+axis] = rail.get_homing_info().position_endstop
|
||||||
def get_positions_from_stable(self, stable_positions, params):
|
out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
|
||||||
angle_names = ['angle_a', 'angle_b', 'angle_c']
|
|
||||||
angles = [math.radians(params[an]) for an in angle_names]
|
|
||||||
radius = params['radius']
|
|
||||||
radius2 = radius**2
|
|
||||||
towers = [(math.cos(a) * radius, math.sin(a) * radius) for a in angles]
|
|
||||||
arm2 = [params[an]**2 for an in ['arm_a', 'arm_b', 'arm_c']]
|
|
||||||
stepdist_names = ['stepdist_a', 'stepdist_b', 'stepdist_c']
|
|
||||||
stepdists = [params[sn] for sn in stepdist_names]
|
|
||||||
endstop_names = ['endstop_a', 'endstop_b', 'endstop_c']
|
|
||||||
endstops = [params[en] + math.sqrt(a2 - radius2)
|
|
||||||
for en, a2 in zip(endstop_names, arm2)]
|
|
||||||
out = []
|
|
||||||
for spos in stable_positions:
|
|
||||||
sphere_coords = [
|
|
||||||
(t[0], t[1], es - sp * sd)
|
|
||||||
for t, es, sd, sp in zip(towers, endstops, stepdists, spos) ]
|
|
||||||
out.append(mathutil.trilateration(sphere_coords, arm2))
|
|
||||||
return out
|
return out
|
||||||
|
|
||||||
def load_kinematics(toolhead, config):
|
def load_kinematics(toolhead, config):
|
||||||
|
|
Loading…
Reference in New Issue