toolhead: Remove the do_calc_junction flag

It is not necessary to track the do_calc_junction flag as it can just
as easily be determined at the top of the calc_junction() method.
This simplifies the code.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2017-01-31 11:04:49 -05:00
parent 528c29c01c
commit e14d86d8b8
1 changed files with 14 additions and 23 deletions

View File

@ -17,23 +17,13 @@ class Move:
self.start_pos = tuple(start_pos) self.start_pos = tuple(start_pos)
self.end_pos = tuple(end_pos) self.end_pos = tuple(end_pos)
self.accel = toolhead.max_accel self.accel = toolhead.max_accel
self.do_calc_junction = self.is_kinematic_move = True self.is_kinematic_move = True
self.axes_d = axes_d = [end_pos[i] - start_pos[i] for i in (0, 1, 2, 3)] self.axes_d = axes_d = [end_pos[i] - start_pos[i] for i in (0, 1, 2, 3)]
if axes_d[2]: self.move_d = move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
# Move with Z
move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
self.do_calc_junction = False
else:
move_d = math.sqrt(axes_d[0]**2 + axes_d[1]**2)
if not move_d: if not move_d:
# Extrude only move # Extrude only move
move_d = abs(axes_d[3]) self.move_d = move_d = abs(axes_d[3])
if not move_d: self.is_kinematic_move = False
# No move
self.move_d = 0.
return
self.do_calc_junction = self.is_kinematic_move = False
self.move_d = move_d
# Junction speeds are tracked in velocity squared. The # Junction speeds are tracked in velocity squared. The
# delta_v2 is the maximum amount of this squared-velocity that # delta_v2 is the maximum amount of this squared-velocity that
# can change in this move. # can change in this move.
@ -42,20 +32,21 @@ class Move:
self.delta_v2 = 2.0 * move_d * self.accel self.delta_v2 = 2.0 * move_d * self.accel
def limit_speed(self, speed, accel): def limit_speed(self, speed, accel):
self.max_cruise_v2 = min(self.max_cruise_v2, speed**2) self.max_cruise_v2 = min(self.max_cruise_v2, speed**2)
if accel < self.accel: self.accel = min(self.accel, accel)
self.accel = accel
self.delta_v2 = 2.0 * self.move_d * self.accel self.delta_v2 = 2.0 * self.move_d * self.accel
self.do_calc_junction = False
def calc_junction(self, prev_move): def calc_junction(self, prev_move):
if not self.do_calc_junction or not prev_move.do_calc_junction: axes_d = self.axes_d
prev_axes_d = prev_move.axes_d
if (axes_d[2] or prev_axes_d[2] or self.accel != prev_move.accel
or not self.is_kinematic_move or not prev_move.is_kinematic_move):
return return
# Allow extruder to calculate its maximum junction # Allow extruder to calculate its maximum junction
extruder_v2 = self.toolhead.extruder.calc_junction(prev_move, self) extruder_v2 = self.toolhead.extruder.calc_junction(prev_move, self)
# Find max velocity using approximated centripetal velocity as # Find max velocity using approximated centripetal velocity as
# described at: # described at:
# https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/ # https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
junction_cos_theta = -((self.axes_d[0] * prev_move.axes_d[0] junction_cos_theta = -((axes_d[0] * prev_axes_d[0]
+ self.axes_d[1] * prev_move.axes_d[1]) + axes_d[1] * prev_axes_d[1])
/ (self.move_d * prev_move.move_d)) / (self.move_d * prev_move.move_d))
if junction_cos_theta > 0.999999: if junction_cos_theta > 0.999999:
return return