clocksync: Rework clock synchronization algorithm
Instead of tracking the minimum frequency ever observed, attempt to track the actual frequency of the micro-controller (relative to the host clock). This improves the stability of the secondary mcu clocks when multiple mcus are configured. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
parent
387cab27bd
commit
d9fe4b6944
|
@ -5,121 +5,120 @@
|
|||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import logging, threading
|
||||
|
||||
MAX_CLOCK_DRIFT = 0.000100
|
||||
COMM_TIMEOUT = 3.5
|
||||
RTT_AGE = .000010 / (60. * 60.)
|
||||
|
||||
class ClockSync:
|
||||
def __init__(self, reactor):
|
||||
self.reactor = reactor
|
||||
self.serial = None
|
||||
self.queries_pending = 0
|
||||
self.status_timer = self.reactor.register_timer(self._status_event)
|
||||
self.status_cmd = None
|
||||
self.mcu_freq = 0.
|
||||
self.lock = threading.Lock()
|
||||
self.last_clock = 0
|
||||
self.last_clock_time = self.last_clock_time_min = 0.
|
||||
self.min_freq = self.max_freq = 0.
|
||||
self.min_half_rtt = 999999999.9
|
||||
self.min_half_rtt_time = 0.
|
||||
self.clock_est = self.prev_est = (0., 0, 0.)
|
||||
self.last_clock_fast = False
|
||||
def connect(self, serial):
|
||||
self.serial = serial
|
||||
# Load initial last_clock/last_clock_time
|
||||
msgparser = serial.msgparser
|
||||
self.mcu_freq = msgparser.get_constant_float('CLOCK_FREQ')
|
||||
# Load initial clock and frequency
|
||||
uptime_msg = msgparser.create_command('get_uptime')
|
||||
params = serial.send_with_response(uptime_msg, 'uptime')
|
||||
self.last_clock = (params['high'] << 32) | params['clock']
|
||||
self.last_clock_time = params['#receive_time']
|
||||
self.last_clock_time_min = params['#sent_time']
|
||||
self.mcu_freq = msgparser.get_constant_float('CLOCK_FREQ')
|
||||
self.min_freq = self.mcu_freq * (1. - MAX_CLOCK_DRIFT)
|
||||
self.max_freq = self.mcu_freq * (1. + MAX_CLOCK_DRIFT)
|
||||
self.last_clock = clock = (params['high'] << 32) | params['clock']
|
||||
new_time = .5 * (params['#sent_time'] + params['#receive_time'])
|
||||
self.clock_est = self.prev_est = (new_time, clock, self.mcu_freq)
|
||||
# Enable periodic get_status timer
|
||||
serial.register_callback(self._handle_status, 'status')
|
||||
self.status_cmd = msgparser.create_command('get_status')
|
||||
for i in range(8):
|
||||
params = serial.send_with_response(self.status_cmd, 'status')
|
||||
self._handle_status(params)
|
||||
self.reactor.pause(0.100)
|
||||
serial.register_callback(self._handle_status, 'status')
|
||||
self.reactor.update_timer(self.status_timer, self.reactor.NOW)
|
||||
def connect_file(self, serial, pace=False):
|
||||
self.serial = serial
|
||||
self.mcu_freq = serial.msgparser.get_constant_float('CLOCK_FREQ')
|
||||
est_freq = 1000000000000.
|
||||
freq = 1000000000000.
|
||||
if pace:
|
||||
est_freq = self.mcu_freq
|
||||
self.min_freq = self.max_freq = est_freq
|
||||
self.last_clock = 0
|
||||
self.last_clock_time = self.reactor.monotonic()
|
||||
serial.set_clock_est(
|
||||
self.min_freq, self.last_clock_time, self.last_clock)
|
||||
def stats(self, eventtime):
|
||||
return "last_clock=%d last_clock_time=%.3f" % (
|
||||
self.last_clock, self.last_clock_time)
|
||||
def is_active(self, eventtime):
|
||||
return self.queries_pending <= 4
|
||||
def calibrate_clock(self, print_time, eventtime):
|
||||
return (0., self.mcu_freq)
|
||||
def get_clock(self, eventtime):
|
||||
with self.lock:
|
||||
freq = self.mcu_freq
|
||||
serial.set_clock_est(freq, self.reactor.monotonic(), 0)
|
||||
# mcu clock querying
|
||||
def _status_event(self, eventtime):
|
||||
self.serial.send(self.status_cmd)
|
||||
return eventtime + 1.0
|
||||
def _handle_status(self, params):
|
||||
# Extend clock to 64bit
|
||||
clock32 = params['clock']
|
||||
last_clock = self.last_clock
|
||||
last_clock_time = self.last_clock_time
|
||||
min_freq = self.min_freq
|
||||
return int(last_clock + (eventtime - last_clock_time) * min_freq)
|
||||
clock = (last_clock & ~0xffffffff) | clock32
|
||||
if clock < last_clock:
|
||||
clock += 0x100000000
|
||||
self.last_clock = clock
|
||||
# Check if this is the best round-trip-time seen so far
|
||||
sent_time = params['#sent_time']
|
||||
if not sent_time:
|
||||
return
|
||||
receive_time = params['#receive_time']
|
||||
half_rtt = .5 * (receive_time - sent_time)
|
||||
aged_rtt = (sent_time - self.min_half_rtt_time) * RTT_AGE
|
||||
if half_rtt < self.min_half_rtt + aged_rtt:
|
||||
self.min_half_rtt = half_rtt
|
||||
self.min_half_rtt_time = sent_time
|
||||
logging.debug("new minimum rtt=%.6f (%d)", half_rtt, self.mcu_freq)
|
||||
# Calculate expected clock range from sent/receive time
|
||||
est_min_clock = self.get_clock(sent_time + self.min_half_rtt)
|
||||
est_max_clock = self.get_clock(receive_time - self.min_half_rtt)
|
||||
if clock >= est_min_clock and clock <= est_max_clock:
|
||||
# Sample inline with expectations
|
||||
return
|
||||
# Update estimated frequency based on latest sample
|
||||
if clock > est_max_clock:
|
||||
clock_fast = True
|
||||
new_time = receive_time - self.min_half_rtt
|
||||
else:
|
||||
clock_fast = False
|
||||
new_time = sent_time + self.min_half_rtt
|
||||
if clock_fast != self.last_clock_fast:
|
||||
self.prev_est = self.clock_est
|
||||
self.last_clock_fast = clock_fast
|
||||
new_freq = (self.prev_est[1] - clock) / (self.prev_est[0] - new_time)
|
||||
self.serial.set_clock_est(new_freq, new_time + 0.001, clock)
|
||||
self.clock_est = (new_time, clock, new_freq)
|
||||
# clock frequency conversions
|
||||
def print_time_to_clock(self, print_time):
|
||||
return int(print_time * self.mcu_freq)
|
||||
def clock_to_print_time(self, clock):
|
||||
return clock / self.mcu_freq
|
||||
def get_adjusted_freq(self):
|
||||
return self.mcu_freq
|
||||
# system time conversions
|
||||
def get_clock(self, eventtime):
|
||||
sample_time, clock, freq = self.clock_est
|
||||
return int(clock + (eventtime - sample_time) * freq)
|
||||
def estimated_print_time(self, eventtime):
|
||||
return self.clock_to_print_time(self.get_clock(eventtime))
|
||||
# misc commands
|
||||
def clock32_to_clock64(self, clock32):
|
||||
with self.lock:
|
||||
last_clock = self.last_clock
|
||||
clock_diff = (last_clock - clock32) & 0xffffffff
|
||||
if clock_diff & 0x80000000:
|
||||
return last_clock + 0x100000000 - clock_diff
|
||||
return last_clock - clock_diff
|
||||
def print_time_to_clock(self, print_time):
|
||||
return int(print_time * self.mcu_freq)
|
||||
def clock_to_print_time(self, clock):
|
||||
return clock / self.mcu_freq
|
||||
def estimated_print_time(self, eventtime):
|
||||
return self.clock_to_print_time(self.get_clock(eventtime))
|
||||
def get_adjusted_freq(self):
|
||||
return self.mcu_freq
|
||||
def _status_event(self, eventtime):
|
||||
self.queries_pending += 1
|
||||
self.serial.send(self.status_cmd)
|
||||
return eventtime + 1.0
|
||||
def _handle_status(self, params):
|
||||
self.queries_pending = 0
|
||||
sent_time = params['#sent_time']
|
||||
if not sent_time:
|
||||
return
|
||||
receive_time = params['#receive_time']
|
||||
clock = params['clock']
|
||||
with self.lock:
|
||||
# Extend clock to 64bit
|
||||
clock = (self.last_clock & ~0xffffffff) | clock
|
||||
if clock < self.last_clock:
|
||||
clock += 0x100000000
|
||||
# Calculate expected send time from clock and previous estimates
|
||||
clock_delta = clock - self.last_clock
|
||||
min_send_time = (self.last_clock_time_min
|
||||
+ clock_delta / self.max_freq)
|
||||
max_send_time = self.last_clock_time + clock_delta / self.min_freq
|
||||
# Calculate intersection of times
|
||||
min_time = max(min_send_time, sent_time)
|
||||
max_time = min(max_send_time, receive_time)
|
||||
if min_time > max_time:
|
||||
# No intersection - clock drift must be greater than expected
|
||||
new_min_freq, new_max_freq = self.min_freq, self.max_freq
|
||||
if min_send_time > receive_time:
|
||||
new_max_freq = (
|
||||
clock_delta / (receive_time - self.last_clock_time_min))
|
||||
else:
|
||||
new_min_freq = (
|
||||
clock_delta / (sent_time - self.last_clock_time))
|
||||
logging.warning(
|
||||
"High clock drift! Now %.0f:%.0f was %.0f:%.0f",
|
||||
new_min_freq, new_max_freq, self.min_freq, self.max_freq)
|
||||
self.min_freq, self.max_freq = new_min_freq, new_max_freq
|
||||
min_time, max_time = sent_time, receive_time
|
||||
# Update variables
|
||||
self.last_clock = clock
|
||||
self.last_clock_time = max_time
|
||||
self.last_clock_time_min = min_time
|
||||
self.serial.set_clock_est(self.min_freq, max_time + 0.001, clock)
|
||||
def is_active(self, eventtime):
|
||||
print_time = self.estimated_print_time(eventtime)
|
||||
last_clock_print_time = self.clock_to_print_time(self.last_clock)
|
||||
return print_time < last_clock_print_time + COMM_TIMEOUT
|
||||
def stats(self, eventtime):
|
||||
sample_time, clock, freq = self.clock_est
|
||||
return "freq=%d" % (freq,)
|
||||
def calibrate_clock(self, print_time, eventtime):
|
||||
return (0., self.mcu_freq)
|
||||
|
||||
# Clock synching code for secondary MCUs (whose clocks are sync'ed to
|
||||
# a primary MCU)
|
||||
# Clock syncing code for secondary MCUs (whose clocks are sync'ed to a
|
||||
# primary MCU)
|
||||
class SecondarySync(ClockSync):
|
||||
def __init__(self, reactor, main_sync):
|
||||
ClockSync.__init__(self, reactor)
|
||||
|
@ -136,6 +135,7 @@ class SecondarySync(ClockSync):
|
|||
def connect_file(self, serial, pace=False):
|
||||
ClockSync.connect_file(self, serial, pace)
|
||||
self.clock_adj = (0., self.mcu_freq)
|
||||
# clock frequency conversions
|
||||
def print_time_to_clock(self, print_time):
|
||||
adjusted_offset, adjusted_freq = self.clock_adj
|
||||
return int((print_time - adjusted_offset) * adjusted_freq)
|
||||
|
@ -145,25 +145,22 @@ class SecondarySync(ClockSync):
|
|||
def get_adjusted_freq(self):
|
||||
adjusted_offset, adjusted_freq = self.clock_adj
|
||||
return adjusted_freq
|
||||
# misc commands
|
||||
def stats(self, eventtime):
|
||||
adjusted_offset, adjusted_freq = self.clock_adj
|
||||
return "%s adj=%d" % (ClockSync.stats(self, eventtime), adjusted_freq)
|
||||
def calibrate_clock(self, print_time, eventtime):
|
||||
#logging.debug("calibrate: %.3f: %.6f vs %.6f",
|
||||
# eventtime,
|
||||
# self.estimated_print_time(eventtime),
|
||||
# self.main_sync.estimated_print_time(eventtime))
|
||||
with self.main_sync.lock:
|
||||
ser_clock = self.main_sync.last_clock
|
||||
ser_clock_time = self.main_sync.last_clock_time
|
||||
ser_freq = self.main_sync.min_freq
|
||||
ser_time, ser_clock, ser_freq = self.main_sync.clock_est
|
||||
main_mcu_freq = self.main_sync.mcu_freq
|
||||
|
||||
main_clock = (eventtime - ser_clock_time) * ser_freq + ser_clock
|
||||
main_clock = (eventtime - ser_time) * ser_freq + ser_clock
|
||||
print_time = max(print_time, main_clock / main_mcu_freq)
|
||||
main_sync_clock = (print_time + 2.) * main_mcu_freq
|
||||
sync_time = ser_clock_time + (main_sync_clock - ser_clock) / ser_freq
|
||||
main_sync_clock = (print_time + 4.) * main_mcu_freq
|
||||
sync_time = ser_time + (main_sync_clock - ser_clock) / ser_freq
|
||||
|
||||
print_clock = self.print_time_to_clock(print_time)
|
||||
sync_clock = self.get_clock(sync_time)
|
||||
adjusted_freq = .5 * (sync_clock - print_clock)
|
||||
adjusted_freq = .25 * (sync_clock - print_clock)
|
||||
adjusted_offset = print_time - print_clock / adjusted_freq
|
||||
|
||||
self.clock_adj = (adjusted_offset, adjusted_freq)
|
||||
|
|
Loading…
Reference in New Issue