delta: Simplify DeltaCalibration state tracking

Limit the use of coordinate descent "params".

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2019-12-05 11:00:45 -05:00
parent 27e6b533bc
commit bcf10aa990
1 changed files with 46 additions and 42 deletions

View File

@ -146,38 +146,51 @@ class DeltaKinematics:
self.limit_xy2 = min(limit_xy2, self.slow_xy2) self.limit_xy2 = min(limit_xy2, self.slow_xy2)
def get_status(self, eventtime): def get_status(self, eventtime):
return {'homed_axes': '' if self.need_home else 'xyz'} return {'homed_axes': '' if self.need_home else 'xyz'}
# Helper function for DELTA_CALIBRATE script
def get_calibration(self): def get_calibration(self):
out = { 'radius': self.radius } endstops = [rail.get_homing_info().position_endstop
for i, axis in enumerate('abc'): for rail in self.rails]
rail = self.rails[i] stepdists = [rail.get_steppers()[0].get_step_dist()
out['angle_'+axis] = self.angles[i] for rail in self.rails]
out['arm_'+axis] = self.arm_lengths[i] return DeltaCalibration(self.radius, self.angles, self.arm_lengths,
out['endstop_'+axis] = rail.get_homing_info().position_endstop endstops, stepdists)
out['stepdist_'+axis] = rail.get_steppers()[0].get_step_dist()
return DeltaCalibration(out)
# Delta parameter calibration for DELTA_CALIBRATE tool # Delta parameter calibration for DELTA_CALIBRATE tool
class DeltaCalibration: class DeltaCalibration:
def __init__(self, params): def __init__(self, radius, angles, arms, endstops, stepdists):
self.params = dict(params) self.radius = radius
self.radius = params['radius'] self.angles = angles
self.angles = [params['angle_'+a] for a in 'abc'] self.arms = arms
self.arms = [params['arm_'+a] for a in 'abc'] self.endstops = endstops
self.endstops = [params['endstop_'+a] for a in 'abc'] self.stepdists = stepdists
self.stepdists = [params['stepdist_'+a] for a in 'abc']
# Calculate the XY cartesian coordinates of the delta towers # Calculate the XY cartesian coordinates of the delta towers
radian_angles = [math.radians(a) for a in self.angles] radian_angles = [math.radians(a) for a in angles]
self.towers = [(math.cos(a) * self.radius, math.sin(a) * self.radius) self.towers = [(math.cos(a) * radius, math.sin(a) * radius)
for a in radian_angles] for a in radian_angles]
# Calculate the absolute Z height of each tower endstop # Calculate the absolute Z height of each tower endstop
radius2 = self.radius**2 radius2 = radius**2
self.abs_endstops = [e + math.sqrt(a**2 - radius2) self.abs_endstops = [e + math.sqrt(a**2 - radius2)
for e, a in zip(self.endstops, self.arms)] for e, a in zip(endstops, arms)]
def coordinate_descent_params(self, is_extended):
# Determine adjustment parameters (for use with coordinate_descent)
adj_params = ('radius', 'angle_a', 'angle_b',
'endstop_a', 'endstop_b', 'endstop_c')
if is_extended:
adj_params += ('arm_a', 'arm_b', 'arm_c')
params = { 'radius': self.radius }
for i, axis in enumerate('abc'):
params['angle_'+axis] = self.angles[i]
params['arm_'+axis] = self.arms[i]
params['endstop_'+axis] = self.endstops[i]
params['stepdist_'+axis] = self.stepdists[i]
return adj_params, params
def new_calibration(self, params): def new_calibration(self, params):
# Create a new calibration object with the coordinate_descent params # Create a new calibration object from coordinate_descent params
return DeltaCalibration(params) radius = params['radius']
angles = [params['angle_'+a] for a in 'abc']
arms = [params['arm_'+a] for a in 'abc']
endstops = [params['endstop_'+a] for a in 'abc']
stepdists = [params['stepdist_'+a] for a in 'abc']
return DeltaCalibration(radius, angles, arms, endstops, stepdists)
def get_position_from_stable(self, stable_position): def get_position_from_stable(self, stable_position):
# Return cartesian coordinates for the given stable_position # Return cartesian coordinates for the given stable_position
sphere_coords = [ sphere_coords = [
@ -193,34 +206,25 @@ class DeltaCalibration:
return [(ep - sp) / sd return [(ep - sp) / sd
for sd, ep, sp in zip(self.stepdists, for sd, ep, sp in zip(self.stepdists,
self.abs_endstops, steppos)] self.abs_endstops, steppos)]
def coordinate_descent_params(self, is_extended):
# Determine adjustment parameters (for use with coordinate_descent)
adj_params = ('radius', 'angle_a', 'angle_b',
'endstop_a', 'endstop_b', 'endstop_c')
if is_extended:
adj_params += ('arm_a', 'arm_b', 'arm_c')
return adj_params, self.params
def save_state(self, configfile): def save_state(self, configfile):
# Save the current parameters (for use with SAVE_CONFIG) # Save the current parameters (for use with SAVE_CONFIG)
params = self.params configfile.set('printer', 'delta_radius', "%.6f" % (self.radius,))
configfile.set('printer', 'delta_radius', "%.6f" % (params['radius'])) for i, axis in enumerate('abc'):
for axis in 'abc': configfile.set('stepper_'+axis, 'angle', "%.6f" % (self.angles[i],))
configfile.set('stepper_'+axis, 'angle',
"%.6f" % (params['angle_'+axis],))
configfile.set('stepper_'+axis, 'arm_length', configfile.set('stepper_'+axis, 'arm_length',
"%.6f" % (params['arm_'+axis],)) "%.6f" % (self.arms[i],))
configfile.set('stepper_'+axis, 'position_endstop', configfile.set('stepper_'+axis, 'position_endstop',
"%.6f" % (params['endstop_'+axis],)) "%.6f" % (self.endstops[i],))
gcode = configfile.get_printer().lookup_object("gcode") gcode = configfile.get_printer().lookup_object("gcode")
gcode.respond_info( gcode.respond_info(
"stepper_a: position_endstop: %.6f angle: %.6f arm: %.6f\n" "stepper_a: position_endstop: %.6f angle: %.6f arm: %.6f\n"
"stepper_b: position_endstop: %.6f angle: %.6f arm: %.6f\n" "stepper_b: position_endstop: %.6f angle: %.6f arm: %.6f\n"
"stepper_c: position_endstop: %.6f angle: %.6f arm: %.6f\n" "stepper_c: position_endstop: %.6f angle: %.6f arm: %.6f\n"
"delta_radius: %.6f\n" "delta_radius: %.6f"
% (params['endstop_a'], params['angle_a'], params['arm_a'], % (self.endstops[0], self.angles[0], self.arms[0],
params['endstop_b'], params['angle_b'], params['arm_b'], self.endstops[1], self.angles[1], self.arms[1],
params['endstop_c'], params['angle_c'], params['arm_c'], self.endstops[2], self.angles[2], self.arms[2],
params['radius'])) self.radius))
def load_kinematics(toolhead, config): def load_kinematics(toolhead, config):
return DeltaKinematics(toolhead, config) return DeltaKinematics(toolhead, config)