diff --git a/scripts/graph_motion.py b/scripts/graph_motion.py new file mode 100755 index 00000000..29a5410b --- /dev/null +++ b/scripts/graph_motion.py @@ -0,0 +1,427 @@ +#!/usr/bin/env python2 +# Script to graph motion results +# +# Copyright (C) 2019-2020 Kevin O'Connor +# Copyright (C) 2020 Dmitry Butyugin +# +# This file may be distributed under the terms of the GNU GPLv3 license. +import optparse, datetime, math +import matplotlib + +SEG_TIME = .000100 +INV_SEG_TIME = 1. / SEG_TIME + +SPRING_FREQ=35.0 +DAMPING_RATIO=0.05 + +CONFIG_FREQ=40.0 +CONFIG_DAMPING_RATIO=0.1 + +###################################################################### +# Basic trapezoid motion +###################################################################### + +# List of moves: [(start_v, end_v, move_t), ...] +Moves = [ + (0., 0., .100), + (6.869, 89.443, None), (89.443, 89.443, .120), (89.443, 17.361, None), + (19.410, 120., None), (120., 120., .130), (120., 5., None), + (0., 0., 0.01), + (-5., -100., None), (-100., -100., .100), (-100., -.5, None), + (0., 0., .200) +] +ACCEL = 3000. +MAX_JERK = ACCEL * 0.6 * SPRING_FREQ + +def get_accel(start_v, end_v): + return ACCEL + +def get_accel_jerk_limit(start_v, end_v): + effective_accel = math.sqrt(MAX_JERK * abs(end_v - start_v) / 6.) + return min(effective_accel, ACCEL) + +# Standard constant acceleration generator +def get_acc_pos_ao2(rel_t, start_v, accel, move_t): + return (start_v + 0.5 * accel * rel_t) * rel_t + +# Bezier curve "accel_order=4" generator +def get_acc_pos_ao4(rel_t, start_v, accel, move_t): + inv_accel_t = 1. / move_t + accel_div_accel_t = accel * inv_accel_t + accel_div_accel_t2 = accel_div_accel_t * inv_accel_t + + c4 = -.5 * accel_div_accel_t2; + c3 = accel_div_accel_t; + c1 = start_v + return ((c4 * rel_t + c3) * rel_t * rel_t + c1) * rel_t + +# Bezier curve "accel_order=6" generator +def get_acc_pos_ao6(rel_t, start_v, accel, move_t): + inv_accel_t = 1. / move_t + accel_div_accel_t = accel * inv_accel_t + accel_div_accel_t2 = accel_div_accel_t * inv_accel_t + accel_div_accel_t3 = accel_div_accel_t2 * inv_accel_t + accel_div_accel_t4 = accel_div_accel_t3 * inv_accel_t + + c6 = accel_div_accel_t4; + c5 = -3. * accel_div_accel_t3; + c4 = 2.5 * accel_div_accel_t2; + c1 = start_v; + return (((c6 * rel_t + c5) * rel_t + c4) + * rel_t * rel_t * rel_t + c1) * rel_t + +get_acc_pos = get_acc_pos_ao2 +get_acc = get_accel + +# Calculate positions based on 'Moves' list +def gen_positions(): + out = [] + start_d = start_t = t = 0. + for start_v, end_v, move_t in Moves: + if move_t is None: + move_t = abs(end_v - start_v) / get_acc(start_v, end_v) + accel = (end_v - start_v) / move_t + end_t = start_t + move_t + while t <= end_t: + rel_t = t - start_t + out.append(start_d + get_acc_pos(rel_t, start_v, accel, move_t)) + t += SEG_TIME + start_d += get_acc_pos(move_t, start_v, accel, move_t) + start_t = end_t + return out + + +###################################################################### +# Estimated motion with belt as spring +###################################################################### + +def estimate_spring(positions): + ang_freq2 = (SPRING_FREQ * 2. * math.pi)**2 + damping_factor = 4. * math.pi * DAMPING_RATIO * SPRING_FREQ + head_pos = head_v = 0. + out = [] + for stepper_pos in positions: + head_pos += head_v * SEG_TIME + head_a = (stepper_pos - head_pos) * ang_freq2 + head_v += head_a * SEG_TIME + head_v -= head_v * damping_factor * SEG_TIME + out.append(head_pos) + return out + + +###################################################################### +# List helper functions +###################################################################### + +MARGIN_TIME = 0.050 + +def time_to_index(t): + return int(t * INV_SEG_TIME + .5) + +def indexes(positions): + drop = time_to_index(MARGIN_TIME) + return range(drop, len(positions)-drop) + +def trim_lists(*lists): + keep = len(lists[0]) - time_to_index(2. * MARGIN_TIME) + for l in lists: + del l[keep:] + + +###################################################################### +# Common data filters +###################################################################### + +# Generate estimated first order derivative +def gen_deriv(data): + return [0.] + [(data[i+1] - data[i]) * INV_SEG_TIME + for i in range(len(data)-1)] + +# Simple average between two points smooth_time away +def calc_average(positions, smooth_time): + offset = time_to_index(smooth_time * .5) + out = [0.] * len(positions) + for i in indexes(positions): + out[i] = .5 * (positions[i-offset] + positions[i+offset]) + return out + +# Average (via integration) of smooth_time range +def calc_smooth(positions, smooth_time): + offset = time_to_index(smooth_time * .5) + weight = 1. / (2*offset - 1) + out = [0.] * len(positions) + for i in indexes(positions): + out[i] = sum(positions[i-offset+1:i+offset]) * weight + return out + +# Time weighted average (via integration) of smooth_time range +def calc_weighted(positions, smooth_time): + offset = time_to_index(smooth_time * .5) + weight = 1. / offset**2 + out = [0.] * len(positions) + for i in indexes(positions): + weighted_data = [positions[j] * (offset - abs(j-i)) + for j in range(i-offset, i+offset)] + out[i] = sum(weighted_data) * weight + return out + +# Weighted average (`h**2 - (t-T)**2`) of smooth_time range +def calc_weighted2(positions, smooth_time): + offset = time_to_index(smooth_time * .5) + weight = .75 / offset**3 + out = [0.] * len(positions) + for i in indexes(positions): + weighted_data = [positions[j] * (offset**2 - (j-i)**2) + for j in range(i-offset, i+offset)] + out[i] = sum(weighted_data) * weight + return out + +# Weighted average (`(h**2 - (t-T)**2)**2`) of smooth_time range +def calc_weighted4(positions, smooth_time): + offset = time_to_index(smooth_time * .5) + weight = 15 / (16. * offset**5) + out = [0.] * len(positions) + for i in indexes(positions): + weighted_data = [positions[j] * ((offset**2 - (j-i)**2))**2 + for j in range(i-offset, i+offset)] + out[i] = sum(weighted_data) * weight + return out + +# Weighted average (`(h - abs(t-T))**2 * (2 * abs(t-T) + h)`) of range +def calc_weighted3(positions, smooth_time): + offset = time_to_index(smooth_time * .5) + weight = 1. / offset**4 + out = [0.] * len(positions) + for i in indexes(positions): + weighted_data = [positions[j] * (offset - abs(j-i))**2 + * (2. * abs(j-i) + offset) + for j in range(i-offset, i+offset)] + out[i] = sum(weighted_data) * weight + return out + + +###################################################################### +# Spring motion estimation +###################################################################### + +def calc_spring_raw(positions): + sa = (INV_SEG_TIME / (CONFIG_FREQ * 2. * math.pi))**2 + ra = 2. * CONFIG_DAMPING_RATIO * math.sqrt(sa) + out = [0.] * len(positions) + for i in indexes(positions): + out[i] = (positions[i] + + sa * (positions[i-1] - 2.*positions[i] + positions[i+1]) + + ra * (positions[i+1] - positions[i])) + return out + +def calc_spring_double_weighted(positions, smooth_time): + offset = time_to_index(smooth_time * .25) + sa = (INV_SEG_TIME / (offset * CONFIG_FREQ * 2. * math.pi))**2 + ra = 2. * CONFIG_DAMPING_RATIO * math.sqrt(sa) + out = [0.] * len(positions) + for i in indexes(positions): + out[i] = (positions[i] + + sa * (positions[i-offset] - 2.*positions[i] + + positions[i+offset]) + + ra * (positions[i+1] - positions[i])) + return calc_weighted(out, smooth_time=.5 * smooth_time) + +###################################################################### +# Input shapers +###################################################################### + +def get_zv_shaper(): + df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2) + K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df) + t_d = 1. / (CONFIG_FREQ * df) + A = [1., K] + T = [0., .5*t_d] + return (A, T, "ZV") + +def get_zvd_shaper(): + df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2) + K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df) + t_d = 1. / (CONFIG_FREQ * df) + A = [1., 2.*K, K**2] + T = [0., .5*t_d, t_d] + return (A, T, "ZVD") + +def get_mzv_shaper(): + df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2) + K = math.exp(-.75 * CONFIG_DAMPING_RATIO * math.pi / df) + t_d = 1. / (CONFIG_FREQ * df) + + a1 = 1. - 1. / math.sqrt(2.) + a2 = (math.sqrt(2.) - 1.) * K + a3 = a1 * K * K + + A = [a1, a2, a3] + T = [0., .375*t_d, .75*t_d] + return (A, T, "MZV") + +def get_ei_shaper(): + v_tol = 0.05 # vibration tolerance + df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2) + K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df) + t_d = 1. / (CONFIG_FREQ * df) + + a1 = .25 * (1. + v_tol) + a2 = .5 * (1. - v_tol) * K + a3 = a1 * K * K + + A = [a1, a2, a3] + T = [0., .5*t_d, t_d] + return (A, T, "EI") + +def get_2hump_ei_shaper(): + v_tol = 0.05 # vibration tolerance + df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2) + K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df) + t_d = 1. / (CONFIG_FREQ * df) + + V2 = v_tol**2 + X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.) + a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X) + a2 = (.5 - a1) * K + a3 = a2 * K + a4 = a1 * K * K * K + + A = [a1, a2, a3, a4] + T = [0., .5*t_d, t_d, 1.5*t_d] + return (A, T, "2-hump EI") + +def get_3hump_ei_shaper(): + v_tol = 0.05 # vibration tolerance + df = math.sqrt(1. - CONFIG_DAMPING_RATIO**2) + K = math.exp(-CONFIG_DAMPING_RATIO * math.pi / df) + t_d = 1. / (CONFIG_FREQ * df) + + K2 = K*K + a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol)) + a2 = 0.25 * (1. - v_tol) * K + a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2 + a4 = a2 * K2 + a5 = a1 * K2 * K2 + + A = [a1, a2, a3, a4, a5] + T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d] + return (A, T, "3-hump EI") + + +def shift_pulses(shaper): + A, T, name = shaper + n = len(T) + ts = (sum([A[i] * T[i] for i in range(n)])) / sum(A) + for i in range(n): + T[i] -= ts + +def calc_shaper(shaper, positions): + shift_pulses(shaper) + A = shaper[0] + inv_D = 1. / sum(A) + n = len(A) + T = [time_to_index(-shaper[1][j]) for j in range(n)] + out = [0.] * len(positions) + for i in indexes(positions): + out[i] = sum([positions[i + T[j]] * A[j] for j in range(n)]) * inv_D + return out + +# Ideal values +SMOOTH_TIME = (2./3.) / CONFIG_FREQ + +def gen_updated_position(positions): + #return calc_weighted(positions, 0.040) + #return calc_spring_double_weighted(positions, SMOOTH_TIME) + #return calc_weighted4(calc_spring_raw(positions), SMOOTH_TIME) + return calc_shaper(get_ei_shaper(), positions) + + +###################################################################### +# Plotting and startup +###################################################################### + +def plot_motion(): + # Nominal motion + positions = gen_positions() + velocities = gen_deriv(positions) + accels = gen_deriv(velocities) + # Updated motion + upd_positions = gen_updated_position(positions) + upd_velocities = gen_deriv(upd_positions) + upd_accels = gen_deriv(upd_velocities) + # Estimated position with model of belt as spring + spring_orig = estimate_spring(positions) + spring_upd = estimate_spring(upd_positions) + spring_diff_orig = [n-o for n, o in zip(spring_orig, positions)] + spring_diff_upd = [n-o for n, o in zip(spring_upd, positions)] + head_velocities = gen_deriv(spring_orig) + head_accels = gen_deriv(head_velocities) + head_upd_velocities = gen_deriv(spring_upd) + head_upd_accels = gen_deriv(head_upd_velocities) + # Build plot + times = [SEG_TIME * i for i in range(len(positions))] + trim_lists(times, velocities, accels, + upd_velocities, upd_velocities, upd_accels, + spring_diff_orig, spring_diff_upd, + head_velocities, head_upd_velocities, + head_accels, head_upd_accels) + fig, (ax1, ax2, ax3) = matplotlib.pyplot.subplots(nrows=3, sharex=True) + ax1.set_title("Simulation: resonance freq=%.1f Hz, damping_ratio=%.3f,\n" + "configured freq=%.1f Hz, damping_ratio = %.3f" + % (SPRING_FREQ, DAMPING_RATIO, CONFIG_FREQ + , CONFIG_DAMPING_RATIO)) + ax1.set_ylabel('Velocity (mm/s)') + ax1.plot(times, upd_velocities, 'r', label='New Velocity', alpha=0.8) + ax1.plot(times, velocities, 'g', label='Nominal Velocity', alpha=0.8) + ax1.plot(times, head_velocities, label='Head Velocity', alpha=0.4) + ax1.plot(times, head_upd_velocities, label='New Head Velocity', alpha=0.4) + fontP = matplotlib.font_manager.FontProperties() + fontP.set_size('x-small') + ax1.legend(loc='best', prop=fontP) + ax1.grid(True) + ax2.set_ylabel('Acceleration (mm/s^2)') + ax2.plot(times, upd_accels, 'r', label='New Accel', alpha=0.8) + ax2.plot(times, accels, 'g', label='Nominal Accel', alpha=0.8) + ax2.plot(times, head_accels, alpha=0.4) + ax2.plot(times, head_upd_accels, alpha=0.4) + ax2.set_ylim([-5. * ACCEL, 5. * ACCEL]) + ax2.legend(loc='best', prop=fontP) + ax2.grid(True) + ax3.set_ylabel('Deviation (mm)') + ax3.plot(times, spring_diff_upd, 'r', label='New', alpha=0.8) + ax3.plot(times, spring_diff_orig, 'g', label='Nominal', alpha=0.8) + ax3.grid(True) + ax3.legend(loc='best', prop=fontP) + ax3.set_xlabel('Time (s)') + return fig + +def setup_matplotlib(output_to_file): + global matplotlib + if output_to_file: + matplotlib.use('Agg') + import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager + import matplotlib.ticker + +def main(): + # Parse command-line arguments + usage = "%prog [options]" + opts = optparse.OptionParser(usage) + opts.add_option("-o", "--output", type="string", dest="output", + default=None, help="filename of output graph") + options, args = opts.parse_args() + if len(args) != 0: + opts.error("Incorrect number of arguments") + + # Draw graph + setup_matplotlib(options.output is not None) + fig = plot_motion() + + # Show graph + if options.output is None: + matplotlib.pyplot.show() + else: + fig.set_size_inches(8, 6) + fig.savefig(options.output) + +if __name__ == '__main__': + main() diff --git a/scripts/graph_shaper.py b/scripts/graph_shaper.py new file mode 100755 index 00000000..bf94afc1 --- /dev/null +++ b/scripts/graph_shaper.py @@ -0,0 +1,283 @@ +#!/usr/bin/env python2 +# Script to plot input shapers +# +# Copyright (C) 2020 Kevin O'Connor +# Copyright (C) 2020 Dmitry Butyugin +# +# This file may be distributed under the terms of the GNU GPLv3 license. +import optparse, math +import matplotlib + +# A set of damping ratios to calculate shaper response for +DAMPING_RATIOS=[0.05, 0.1, 0.2] + +# Parameters of the input shaper +SHAPER_FREQ=50.0 +SHAPER_DAMPING_RATIO=0.1 + +# Simulate input shaping of step function for these true resonance frequency +# and damping ratio +STEP_SIMULATION_RESONANCE_FREQ=60. +STEP_SIMULATION_DAMPING_RATIO=0.15 + +# If set, defines which range of frequencies to plot shaper frequency responce +PLOT_FREQ_RANGE = [] # If empty, will be automatically determined +#PLOT_FREQ_RANGE = [10., 100.] + +PLOT_FREQ_STEP = .01 + +###################################################################### +# Input shapers +###################################################################### + +def get_zv_shaper(): + df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) + K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) + t_d = 1. / (SHAPER_FREQ * df) + A = [1., K] + T = [0., .5*t_d] + return (A, T, "ZV") + +def get_zvd_shaper(): + df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) + K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) + t_d = 1. / (SHAPER_FREQ * df) + A = [1., 2.*K, K**2] + T = [0., .5*t_d, t_d] + return (A, T, "ZVD") + +def get_mzv_shaper(): + df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) + K = math.exp(-.75 * SHAPER_DAMPING_RATIO * math.pi / df) + t_d = 1. / (SHAPER_FREQ * df) + + a1 = 1. - 1. / math.sqrt(2.) + a2 = (math.sqrt(2.) - 1.) * K + a3 = a1 * K * K + + A = [a1, a2, a3] + T = [0., .375*t_d, .75*t_d] + return (A, T, "MZV") + +def get_ei_shaper(): + v_tol = 0.05 # vibration tolerance + df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) + K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) + t_d = 1. / (SHAPER_FREQ * df) + + a1 = .25 * (1. + v_tol) + a2 = .5 * (1. - v_tol) * K + a3 = a1 * K * K + + A = [a1, a2, a3] + T = [0., .5*t_d, t_d] + return (A, T, "EI") + +def get_2hump_ei_shaper(): + v_tol = 0.05 # vibration tolerance + df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) + K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) + t_d = 1. / (SHAPER_FREQ * df) + + V2 = v_tol**2 + X = pow(V2 * (math.sqrt(1. - V2) + 1.), 1./3.) + a1 = (3.*X*X + 2.*X + 3.*V2) / (16.*X) + a2 = (.5 - a1) * K + a3 = a2 * K + a4 = a1 * K * K * K + + A = [a1, a2, a3, a4] + T = [0., .5*t_d, t_d, 1.5*t_d] + return (A, T, "2-hump EI") + +def get_3hump_ei_shaper(): + v_tol = 0.05 # vibration tolerance + df = math.sqrt(1. - SHAPER_DAMPING_RATIO**2) + K = math.exp(-SHAPER_DAMPING_RATIO * math.pi / df) + t_d = 1. / (SHAPER_FREQ * df) + + K2 = K*K + a1 = 0.0625 * (1. + 3. * v_tol + 2. * math.sqrt(2. * (v_tol + 1.) * v_tol)) + a2 = 0.25 * (1. - v_tol) * K + a3 = (0.5 * (1. + v_tol) - 2. * a1) * K2 + a4 = a2 * K2 + a5 = a1 * K2 * K2 + + A = [a1, a2, a3, a4, a5] + T = [0., .5*t_d, t_d, 1.5*t_d, 2.*t_d] + return (A, T, "3-hump EI") + + +def estimate_shaper(shaper, freq, damping_ratio): + A, T, _ = shaper + n = len(T) + inv_D = 1. / sum(A) + omega = 2. * math.pi * freq + damping = damping_ratio * omega + omega_d = omega * math.sqrt(1. - damping_ratio**2) + S = C = 0 + for i in range(n): + W = A[i] * math.exp(-damping * (T[-1] - T[i])) + S += W * math.sin(omega_d * T[i]) + C += W * math.cos(omega_d * T[i]) + return math.sqrt(S*S + C*C) * inv_D + +def shift_pulses(shaper): + A, T, name = shaper + n = len(T) + ts = sum([A[i] * T[i] for i in range(n)]) / sum(A) + for i in range(n): + T[i] -= ts + +# Shaper selection +get_shaper = get_ei_shaper + + +###################################################################### +# Plotting and startup +###################################################################### + +def bisect(func, left, right): + lhs_sign = math.copysign(1., func(left)) + while right-left > 1e-8: + mid = .5 * (left + right) + val = func(mid) + if math.copysign(1., val) == lhs_sign: + left = mid + else: + right = mid + return .5 * (left + right) + +def find_shaper_plot_range(shaper, vib_tol): + def eval_shaper(freq): + return estimate_shaper(shaper, freq, DAMPING_RATIOS[0]) - vib_tol + if not PLOT_FREQ_RANGE: + left = bisect(eval_shaper, 0., SHAPER_FREQ) + right = bisect(eval_shaper, SHAPER_FREQ, 2.4 * SHAPER_FREQ) + else: + left, right = PLOT_FREQ_RANGE + return (left, right) + +def gen_shaper_response(shaper): + # Calculate shaper vibration responce on a range of requencies + response = [] + freqs = [] + freq, freq_end = find_shaper_plot_range(shaper, vib_tol=0.25) + while freq <= freq_end: + vals = [] + for damping_ratio in DAMPING_RATIOS: + vals.append(estimate_shaper(shaper, freq, damping_ratio)) + response.append(vals) + freqs.append(freq) + freq += PLOT_FREQ_STEP + legend = ['damping ratio = %.3f' % d_r for d_r in DAMPING_RATIOS] + return freqs, response, legend + +def gen_shaped_step_function(shaper): + # Calculate shaping of a step function + A, T, _ = shaper + inv_D = 1. / sum(A) + n = len(T) + + omega = 2. * math.pi * STEP_SIMULATION_RESONANCE_FREQ + damping = STEP_SIMULATION_DAMPING_RATIO * omega + omega_d = omega * math.sqrt(1. - STEP_SIMULATION_DAMPING_RATIO**2) + phase = math.acos(STEP_SIMULATION_DAMPING_RATIO) + + t_start = T[0] - .5 / SHAPER_FREQ + t_end = T[-1] + 1.5 / STEP_SIMULATION_RESONANCE_FREQ + result = [] + time = [] + t = t_start + + def step_response(t): + if t < 0.: + return 0. + return 1. - math.exp(-damping * t) * math.sin(omega_d * t + + phase) / math.sin(phase) + + while t <= t_end: + val = [] + val.append(1. if t >= 0. else 0.) + #val.append(step_response(t)) + + commanded = 0. + response = 0. + S = C = 0 + for i in range(n): + if t < T[i]: + continue + commanded += A[i] + response += A[i] * step_response(t - T[i]) + val.append(commanded * inv_D) + val.append(response * inv_D) + + result.append(val) + time.append(t) + t += .01 / SHAPER_FREQ + legend = ['step', 'shaper commanded', 'system response'] + return time, result, legend + + +def plot_shaper(shaper): + shift_pulses(shaper) + freqs, response, response_legend = gen_shaper_response(shaper) + time, step_vals, step_legend = gen_shaped_step_function(shaper) + + fig, (ax1, ax2) = matplotlib.pyplot.subplots(nrows=2, figsize=(10,9)) + ax1.set_title("Vibration response simulation for shaper '%s',\n" + "shaper_freq=%.1f Hz, damping_ratio=%.3f" + % (shaper[-1], SHAPER_FREQ, SHAPER_DAMPING_RATIO)) + ax1.plot(freqs, response) + ax1.set_ylim(bottom=0.) + fontP = matplotlib.font_manager.FontProperties() + fontP.set_size('x-small') + ax1.legend(response_legend, loc='best', prop=fontP) + ax1.set_xlabel('Resonance frequency, Hz') + ax1.set_ylabel('Remaining vibrations, ratio') + ax1.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) + ax1.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator()) + ax1.grid(which='major', color='grey') + ax1.grid(which='minor', color='lightgrey') + + ax2.set_title("Unit step input, resonance frequency=%.1f Hz, " + "damping ratio=%.3f" % (STEP_SIMULATION_RESONANCE_FREQ, + STEP_SIMULATION_DAMPING_RATIO)) + ax2.plot(time, step_vals) + ax2.legend(step_legend, loc='best', prop=fontP) + ax2.set_xlabel('Time, sec') + ax2.set_ylabel('Amplitude') + ax2.grid() + fig.tight_layout() + return fig + +def setup_matplotlib(output_to_file): + global matplotlib + if output_to_file: + matplotlib.use('Agg') + import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager + import matplotlib.ticker + +def main(): + # Parse command-line arguments + usage = "%prog [options]" + opts = optparse.OptionParser(usage) + opts.add_option("-o", "--output", type="string", dest="output", + default=None, help="filename of output graph") + options, args = opts.parse_args() + if len(args) != 0: + opts.error("Incorrect number of arguments") + + # Draw graph + setup_matplotlib(options.output is not None) + fig = plot_shaper(get_shaper()) + + # Show graph + if options.output is None: + matplotlib.pyplot.show() + else: + fig.set_size_inches(8, 6) + fig.savefig(options.output) + +if __name__ == '__main__': + main()