delta: Initial support for linear delta kinematics
This adds support for delta based robots. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
parent
7554c7f694
commit
941427554a
|
@ -0,0 +1,94 @@
|
|||
# This file serves as documentation for config parameters of delta
|
||||
# style printers. One may copy and edit this file to configure a new
|
||||
# delta printer. Only parameters unique to delta printers are
|
||||
# described here - see the "example.cfg" file for description of
|
||||
# common config parameters.
|
||||
|
||||
# DO NOT COPY THIS FILE WITHOUT CAREFULLY READING AND UPDATING IT
|
||||
# FIRST. Incorrectly configured parameters may cause damage.
|
||||
|
||||
# The stepper_a section describes the stepper controlling the front
|
||||
# left tower (at 210 degrees). This section also controls the homing
|
||||
# parameters (homing_speed, homing_retract_dist) and maximum tower
|
||||
# length (position_max) for all towers.
|
||||
[stepper_a]
|
||||
step_pin: ar54
|
||||
dir_pin: ar55
|
||||
enable_pin: !ar38
|
||||
step_distance: .01
|
||||
max_velocity: 200
|
||||
max_accel: 3000
|
||||
endstop_pin: ^ar2
|
||||
homing_speed: 50.0
|
||||
position_endstop: 297.05
|
||||
position_max: 297.55
|
||||
|
||||
# The stepper_b section describes the stepper controlling the front
|
||||
# right tower (at 330 degrees)
|
||||
[stepper_b]
|
||||
step_pin: ar60
|
||||
dir_pin: ar61
|
||||
enable_pin: !ar56
|
||||
step_distance: .01
|
||||
max_velocity: 200
|
||||
max_accel: 3000
|
||||
endstop_pin: ^ar15
|
||||
position_endstop: 297.05
|
||||
|
||||
# The stepper_c section describes the stepper controlling the rear
|
||||
# tower (at 90 degrees)
|
||||
[stepper_c]
|
||||
step_pin: ar46
|
||||
dir_pin: ar48
|
||||
enable_pin: !ar62
|
||||
step_distance: .01
|
||||
max_velocity: 200
|
||||
max_accel: 3000
|
||||
endstop_pin: ^ar19
|
||||
position_endstop: 297.05
|
||||
|
||||
[extruder]
|
||||
step_pin: ar26
|
||||
dir_pin: ar28
|
||||
enable_pin: !ar24
|
||||
step_distance: .0022
|
||||
max_velocity: 200
|
||||
max_accel: 3000
|
||||
heater_pin: ar10
|
||||
thermistor_pin: analog13
|
||||
thermistor_type: ATC Semitec 104GT-2
|
||||
control: pid
|
||||
pid_Kp: 22.2
|
||||
pid_Ki: 1.08
|
||||
pid_Kd: 114
|
||||
min_temp: 0
|
||||
max_temp: 250
|
||||
|
||||
[heater_bed]
|
||||
heater_pin: ar8
|
||||
thermistor_pin: analog14
|
||||
thermistor_type: EPCOS 100K B57560G104F
|
||||
control: watermark
|
||||
min_temp: 0
|
||||
max_temp: 130
|
||||
|
||||
# Extruder print fan (omit section if fan not present)
|
||||
#[fan]
|
||||
#pin: ar9
|
||||
#hard_pwm: 1
|
||||
|
||||
[mcu]
|
||||
serial: /dev/ttyACM0
|
||||
baud: 250000
|
||||
pin_map: arduino
|
||||
|
||||
[printer]
|
||||
kinematics: delta
|
||||
# This option must be "delta" for linear delta printers
|
||||
delta_arm_length: 333.0
|
||||
# Length (in mm) of the diagonal rods that connect the linear axes
|
||||
# to the print head
|
||||
delta_radius: 174.75
|
||||
# Radius (in mm) of the horizontal circle formed by the three linear
|
||||
# axis towers. This parameter may also be calculated as:
|
||||
# delta_radius = smooth_rod_offset - effector_offset - carriage_offset
|
|
@ -1,5 +1,6 @@
|
|||
# This file serves as documentation for config parameters. One may
|
||||
# copy and edit this file to configure a new printer.
|
||||
# copy and edit this file to configure a new cartesian style
|
||||
# printer. For delta style printers, see the "example-delta.cfg" file.
|
||||
|
||||
# DO NOT COPY THIS FILE WITHOUT CAREFULLY READING AND UPDATING IT
|
||||
# FIRST. Incorrectly configured parameters may cause damage.
|
||||
|
@ -189,7 +190,7 @@ custom:
|
|||
# The printer section controls high level printer settings
|
||||
[printer]
|
||||
kinematics: cartesian
|
||||
# This option must currently always be "cartesian"
|
||||
# This option must be "cartesian" for cartesian printers
|
||||
motor_off_time: 60
|
||||
# Time (in seconds) of idle time before the printer will try to
|
||||
# disable active motors.
|
||||
|
|
|
@ -126,7 +126,7 @@ Hardware features
|
|||
* Smoothieboard / NXP LPC1769 (ARM cortex-M3)
|
||||
* Unix based scheduling; Unix based real-time scheduling
|
||||
|
||||
* Support for additional kinematics: delta, scara, corexy, etc.
|
||||
* Support for additional kinematics: scara, corexy, etc.
|
||||
|
||||
* Support shared motor enable GPIO lines.
|
||||
|
||||
|
|
|
@ -23,6 +23,14 @@ defs_stepcompress = """
|
|||
int32_t stepcompress_push_sqrt(struct stepcompress *sc
|
||||
, double steps, double step_offset
|
||||
, double clock_offset, double sqrt_offset, double factor);
|
||||
int32_t stepcompress_push_delta_const(
|
||||
struct stepcompress *sc, double clock_offset, double dist
|
||||
, double step_dist, double start_pos, double closest_height2
|
||||
, double height, double movez_r, double inv_velocity);
|
||||
int32_t stepcompress_push_delta_accel(
|
||||
struct stepcompress *sc, double clock_offset, double dist
|
||||
, double step_dist, double start_pos, double closest_height2
|
||||
, double height, double movez_r, double accel_multiplier);
|
||||
void stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock);
|
||||
void stepcompress_queue_msg(struct stepcompress *sc
|
||||
, uint32_t *data, int len);
|
||||
|
|
|
@ -0,0 +1,310 @@
|
|||
# Code for handling the kinematics of linear delta robots
|
||||
#
|
||||
# Copyright (C) 2016 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import math, logging
|
||||
import stepper, homing
|
||||
|
||||
StepList = (0, 1, 2)
|
||||
|
||||
class DeltaKinematics:
|
||||
def __init__(self, printer, config):
|
||||
steppers = ['stepper_a', 'stepper_b', 'stepper_c']
|
||||
self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
|
||||
for n in steppers]
|
||||
radius = config.getfloat('delta_radius')
|
||||
arm_length = config.getfloat('delta_arm_length')
|
||||
self.arm_length2 = arm_length**2
|
||||
self.max_xy2 = min(radius, arm_length - radius)**2
|
||||
self.limit_xy2 = -1.
|
||||
tower_height_at_zeros = math.sqrt(self.arm_length2 - radius**2)
|
||||
self.max_z = self.steppers[0].position_max
|
||||
self.limit_z = self.max_z - (arm_length - tower_height_at_zeros)
|
||||
sin = lambda angle: math.sin(math.radians(angle))
|
||||
cos = lambda angle: math.cos(math.radians(angle))
|
||||
self.towers = [
|
||||
(cos(210.)*radius, sin(210.)*radius),
|
||||
(cos(330.)*radius, sin(330.)*radius),
|
||||
(cos(90.)*radius, sin(90.)*radius)]
|
||||
self.stepper_pos = self.cartesian_to_actuator([0., 0., 0.])
|
||||
def build_config(self):
|
||||
for stepper in self.steppers:
|
||||
stepper.set_max_jerk(0.005 * stepper.max_accel) # XXX
|
||||
for stepper in self.steppers:
|
||||
stepper.build_config()
|
||||
def get_max_speed(self):
|
||||
# XXX - this returns conservative values
|
||||
max_xy_speed = min(s.max_velocity for s in self.steppers)
|
||||
max_xy_accel = min(s.max_accel for s in self.steppers)
|
||||
return max_xy_speed, max_xy_accel
|
||||
def cartesian_to_actuator(self, coord):
|
||||
return [int((math.sqrt(self.arm_length2
|
||||
- (self.towers[i][0] - coord[0])**2
|
||||
- (self.towers[i][1] - coord[1])**2) + coord[2])
|
||||
* self.steppers[i].inv_step_dist + 0.5)
|
||||
for i in StepList]
|
||||
def actuator_to_cartesian(self, pos):
|
||||
# Based on code from Smoothieware
|
||||
tower1 = list(self.towers[0]) + [pos[0]]
|
||||
tower2 = list(self.towers[1]) + [pos[1]]
|
||||
tower3 = list(self.towers[2]) + [pos[2]]
|
||||
|
||||
s12 = matrix_sub(tower1, tower2)
|
||||
s23 = matrix_sub(tower2, tower3)
|
||||
s13 = matrix_sub(tower1, tower3)
|
||||
|
||||
normal = matrix_cross(s12, s23)
|
||||
|
||||
magsq_s12 = matrix_magsq(s12)
|
||||
magsq_s23 = matrix_magsq(s23)
|
||||
magsq_s13 = matrix_magsq(s13)
|
||||
|
||||
inv_nmag_sq = 1.0 / matrix_magsq(normal)
|
||||
q = 0.5 * inv_nmag_sq
|
||||
|
||||
a = q * magsq_s23 * matrix_dot(s12, s13)
|
||||
b = -q * magsq_s13 * matrix_dot(s12, s23) # negate because we use s12 instead of s21
|
||||
c = q * magsq_s12 * matrix_dot(s13, s23)
|
||||
|
||||
circumcenter = [tower1[0] * a + tower2[0] * b + tower3[0] * c,
|
||||
tower1[1] * a + tower2[1] * b + tower3[1] * c,
|
||||
tower1[2] * a + tower2[2] * b + tower3[2] * c]
|
||||
|
||||
r_sq = 0.5 * q * magsq_s12 * magsq_s23 * magsq_s13
|
||||
dist = math.sqrt(inv_nmag_sq * (self.arm_length2 - r_sq))
|
||||
|
||||
return matrix_sub(circumcenter, matrix_mul(normal, dist))
|
||||
def set_position(self, newpos):
|
||||
self.stepper_pos = self.cartesian_to_actuator(newpos)
|
||||
def get_homed_position(self):
|
||||
pos = [(self.stepper_pos[i] + self.steppers[i].get_homed_offset())
|
||||
* self.steppers[i].step_dist
|
||||
for i in StepList]
|
||||
return self.actuator_to_cartesian(pos)
|
||||
def home(self, toolhead, axes):
|
||||
# All axes are homed simultaneously
|
||||
homing_state = homing.Homing(toolhead, [0, 1, 2])
|
||||
s = self.steppers[0] # Assume homing parameters same for all steppers
|
||||
self.limit_xy2 = self.max_xy2
|
||||
# Initial homing
|
||||
homepos = [0., 0., s.position_endstop, None]
|
||||
coord = list(homepos)
|
||||
coord[2] -= 1.5*(s.position_endstop)
|
||||
homing_state.plan_home(list(coord), homepos, self.steppers
|
||||
, s.homing_speed)
|
||||
# Retract
|
||||
coord[2] = homepos[2] - s.homing_retract_dist
|
||||
homing_state.plan_move(list(coord), s.homing_speed)
|
||||
# Home again
|
||||
coord[2] -= s.homing_retract_dist
|
||||
homing_state.plan_home(list(coord), homepos, self.steppers
|
||||
, s.homing_speed/2.0)
|
||||
return homing_state
|
||||
def motor_off(self, move_time):
|
||||
self.limit_xy2 = -1.
|
||||
for stepper in self.steppers:
|
||||
stepper.motor_enable(move_time, 0)
|
||||
def query_endstops(self, move_time):
|
||||
return homing.QueryEndstops(["a", "b", "c"], self.steppers)
|
||||
def check_move(self, move):
|
||||
end_pos = move.end_pos
|
||||
xy2 = end_pos[0]**2 + end_pos[1]**2
|
||||
if xy2 > self.limit_xy2 or end_pos[2] < 0.:
|
||||
if self.limit_xy2 < 0.:
|
||||
raise homing.EndstopError(end_pos, "Must home first")
|
||||
raise homing.EndstopError(end_pos)
|
||||
if end_pos[2] > self.limit_z:
|
||||
if end_pos[2] > self.max_z or xy2 > (self.max_z - end_pos[2])**2:
|
||||
raise homing.EndstopError(end_pos)
|
||||
def move_z(self, move_time, move):
|
||||
if not move.axes_d[2]:
|
||||
return
|
||||
inv_accel = 1. / move.accel
|
||||
inv_cruise_v = 1. / move.cruise_v
|
||||
for i in StepList:
|
||||
towerx_d = self.towers[i][0] - move.start_pos[0]
|
||||
towery_d = self.towers[i][1] - move.start_pos[1]
|
||||
tower_d2 = towerx_d**2 + towery_d**2
|
||||
height = math.sqrt(self.arm_length2 - tower_d2) + move.start_pos[2]
|
||||
|
||||
mcu_time, so = self.steppers[i].prep_move(move_time)
|
||||
inv_step_dist = self.steppers[i].inv_step_dist
|
||||
step_dist = self.steppers[i].step_dist
|
||||
steps = move.axes_d[2] * inv_step_dist
|
||||
|
||||
step_pos = self.stepper_pos[i]
|
||||
step_offset = step_pos - height * inv_step_dist
|
||||
|
||||
# Acceleration steps
|
||||
accel_multiplier = 2.0 * step_dist * inv_accel
|
||||
if move.accel_r:
|
||||
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
|
||||
accel_time_offset = move.start_v * inv_accel
|
||||
accel_sqrt_offset = accel_time_offset**2
|
||||
accel_steps = move.accel_r * steps
|
||||
count = so.step_sqrt(
|
||||
mcu_time - accel_time_offset, accel_steps, step_offset
|
||||
, accel_sqrt_offset, accel_multiplier)
|
||||
step_pos += count
|
||||
step_offset += count - accel_steps
|
||||
mcu_time += move.accel_t
|
||||
# Cruising steps
|
||||
if move.cruise_r:
|
||||
#t = pos/cruise_v
|
||||
cruise_multiplier = step_dist * inv_cruise_v
|
||||
cruise_steps = move.cruise_r * steps
|
||||
count = so.step_factor(
|
||||
mcu_time, cruise_steps, step_offset, cruise_multiplier)
|
||||
step_pos += count
|
||||
step_offset += count - cruise_steps
|
||||
mcu_time += move.cruise_t
|
||||
# Deceleration steps
|
||||
if move.decel_r:
|
||||
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
|
||||
decel_time_offset = move.cruise_v * inv_accel
|
||||
decel_sqrt_offset = decel_time_offset**2
|
||||
decel_steps = move.decel_r * steps
|
||||
count = so.step_sqrt(
|
||||
mcu_time + decel_time_offset, decel_steps, step_offset
|
||||
, decel_sqrt_offset, -accel_multiplier)
|
||||
step_pos += count
|
||||
self.stepper_pos[i] = step_pos
|
||||
def move(self, move_time, move):
|
||||
axes_d = move.axes_d
|
||||
if not axes_d[0] and not axes_d[1]:
|
||||
self.move_z(move_time, move)
|
||||
return
|
||||
move_d = move.move_d
|
||||
movez_r = 0.
|
||||
inv_movexy_d = 1. / move_d
|
||||
inv_movexy_r = 1.
|
||||
if axes_d[2]:
|
||||
movez_r = axes_d[2] * inv_movexy_d
|
||||
inv_movexy_d = 1. / math.sqrt(axes_d[0]**2 + axes_d[1]**2)
|
||||
inv_movexy_r = move_d * inv_movexy_d
|
||||
|
||||
origx, origy, origz = move.start_pos[:3]
|
||||
|
||||
accel_t = move.accel_t
|
||||
cruise_end_t = accel_t + move.cruise_t
|
||||
accel_d = move.accel_r * move_d
|
||||
cruise_end_d = accel_d + move.cruise_r * move_d
|
||||
|
||||
inv_cruise_v = 1. / move.cruise_v
|
||||
inv_accel = 1. / move.accel
|
||||
accel_time_offset = move.start_v * inv_accel
|
||||
accel_multiplier = 2.0 * inv_accel
|
||||
accel_offset = move.start_v**2 * 0.5 * inv_accel
|
||||
decel_time_offset = move.cruise_v * inv_accel + cruise_end_t
|
||||
decel_offset = move.cruise_v**2 * 0.5 * inv_accel + cruise_end_d
|
||||
|
||||
for i in StepList:
|
||||
# Find point on line of movement closest to tower
|
||||
towerx_d = self.towers[i][0] - origx
|
||||
towery_d = self.towers[i][1] - origy
|
||||
closestxy_d = (towerx_d*axes_d[0] + towery_d*axes_d[1])*inv_movexy_d
|
||||
tangentxy_d2 = towerx_d**2 + towery_d**2 - closestxy_d**2
|
||||
closest_height2 = self.arm_length2 - tangentxy_d2
|
||||
closest_height = math.sqrt(closest_height2)
|
||||
closest_d = closestxy_d * inv_movexy_r
|
||||
closestz = origz + closest_d*movez_r
|
||||
|
||||
# Calculate accel/cruise/decel portions of move
|
||||
reverse_d = closest_d + closest_height*movez_r*inv_movexy_r
|
||||
accel_up_d = cruise_up_d = decel_up_d = 0.
|
||||
accel_down_d = cruise_down_d = decel_down_d = 0.
|
||||
if reverse_d <= 0.:
|
||||
accel_down_d = accel_d
|
||||
cruise_down_d = cruise_end_d
|
||||
decel_down_d = move_d
|
||||
elif reverse_d >= move_d:
|
||||
accel_up_d = accel_d
|
||||
cruise_up_d = cruise_end_d
|
||||
decel_up_d = move_d
|
||||
elif reverse_d < accel_d:
|
||||
accel_up_d = reverse_d
|
||||
accel_down_d = accel_d
|
||||
cruise_down_d = cruise_end_d
|
||||
decel_down_d = move_d
|
||||
elif reverse_d < cruise_end_d:
|
||||
accel_up_d = accel_d
|
||||
cruise_up_d = reverse_d
|
||||
cruise_down_d = cruise_end_d
|
||||
decel_down_d = move_d
|
||||
else:
|
||||
accel_up_d = accel_d
|
||||
cruise_up_d = cruise_end_d
|
||||
decel_up_d = reverse_d
|
||||
decel_down_d = move_d
|
||||
|
||||
# Generate steps
|
||||
inv_step_dist = self.steppers[i].inv_step_dist
|
||||
step_dist = self.steppers[i].step_dist
|
||||
step_pos = self.stepper_pos[i]
|
||||
height = step_pos*step_dist - closestz
|
||||
mcu_time, so = self.steppers[i].prep_move(move_time)
|
||||
if accel_up_d > 0.:
|
||||
count = so.step_delta_accel(
|
||||
mcu_time - accel_time_offset, closest_d - accel_up_d,
|
||||
step_dist, closest_d + accel_offset,
|
||||
closest_height2, height, movez_r, accel_multiplier)
|
||||
step_pos += count
|
||||
height += count * step_dist
|
||||
if cruise_up_d > 0.:
|
||||
count = so.step_delta_const(
|
||||
mcu_time + accel_t, closest_d - cruise_up_d,
|
||||
step_dist, closest_d - accel_d,
|
||||
closest_height2, height, movez_r, inv_cruise_v)
|
||||
step_pos += count
|
||||
height += count * step_dist
|
||||
if decel_up_d > 0.:
|
||||
count = so.step_delta_accel(
|
||||
mcu_time + decel_time_offset, closest_d - decel_up_d,
|
||||
step_dist, closest_d - decel_offset,
|
||||
closest_height2, height, movez_r, -accel_multiplier)
|
||||
step_pos += count
|
||||
height += count * step_dist
|
||||
if accel_down_d > 0.:
|
||||
count = so.step_delta_accel(
|
||||
mcu_time - accel_time_offset, closest_d - accel_down_d,
|
||||
-step_dist, closest_d + accel_offset,
|
||||
closest_height2, height, movez_r, accel_multiplier)
|
||||
step_pos += count
|
||||
height += count * step_dist
|
||||
if cruise_down_d > 0.:
|
||||
count = so.step_delta_const(
|
||||
mcu_time + accel_t, closest_d - cruise_down_d,
|
||||
-step_dist, closest_d - accel_d,
|
||||
closest_height2, height, movez_r, inv_cruise_v)
|
||||
step_pos += count
|
||||
height += count * step_dist
|
||||
if decel_down_d > 0.:
|
||||
count = so.step_delta_accel(
|
||||
mcu_time + decel_time_offset, closest_d - decel_down_d,
|
||||
-step_dist, closest_d - decel_offset,
|
||||
closest_height2, height, movez_r, -accel_multiplier)
|
||||
step_pos += count
|
||||
self.stepper_pos[i] = step_pos
|
||||
|
||||
|
||||
######################################################################
|
||||
# Matrix helper functions for 3x1 matrices
|
||||
######################################################################
|
||||
|
||||
def matrix_cross(m1, m2):
|
||||
return [m1[1] * m2[2] - m1[2] * m2[1],
|
||||
m1[2] * m2[0] - m1[0] * m2[2],
|
||||
m1[0] * m2[1] - m1[1] * m2[0]]
|
||||
|
||||
def matrix_dot(m1, m2):
|
||||
return m1[0] * m2[0] + m1[1] * m2[1] + m1[2] * m2[2]
|
||||
|
||||
def matrix_magsq(m1):
|
||||
return m1[0]**2 + m1[1]**2 + m1[2]**2
|
||||
|
||||
def matrix_sub(m1, m2):
|
||||
return [m1[0] - m2[0], m1[1] - m2[1], m1[2] - m2[2]]
|
||||
|
||||
def matrix_mul(m1, s):
|
||||
return [m1[0]*s, m1[1]*s, m1[2]*s]
|
|
@ -69,6 +69,19 @@ class MCU_stepper:
|
|||
clock = mcu_time * self._mcu_freq
|
||||
return self.ffi_lib.stepcompress_push_factor(
|
||||
self._stepqueue, steps, step_offset, clock, factor * self._mcu_freq)
|
||||
def step_delta_const(self, mcu_time, dist, step_dist, start_pos
|
||||
, closest_height2, height, movez_r, inv_velocity):
|
||||
clock = mcu_time * self._mcu_freq
|
||||
return self.ffi_lib.stepcompress_push_delta_const(
|
||||
self._stepqueue, clock, dist, step_dist, start_pos
|
||||
, closest_height2, height, movez_r, inv_velocity * self._mcu_freq)
|
||||
def step_delta_accel(self, mcu_time, dist, step_dist, start_pos
|
||||
, closest_height2, height, movez_r, accel_multiplier):
|
||||
clock = mcu_time * self._mcu_freq
|
||||
mcu_freq2 = self._mcu_freq**2
|
||||
return self.ffi_lib.stepcompress_push_delta_accel(
|
||||
self._stepqueue, clock, dist, step_dist, start_pos
|
||||
, closest_height2, height, movez_r, accel_multiplier * mcu_freq2)
|
||||
def get_errors(self):
|
||||
return self.ffi_lib.stepcompress_get_errors(self._stepqueue)
|
||||
|
||||
|
|
|
@ -428,6 +428,79 @@ stepcompress_push_sqrt(struct stepcompress *sc, double steps, double step_offset
|
|||
return sdir ? count : -count;
|
||||
}
|
||||
|
||||
// Schedule 'count' number of steps using the delta kinematic const speed
|
||||
int32_t
|
||||
stepcompress_push_delta_const(
|
||||
struct stepcompress *sc, double clock_offset, double dist, double step_dist
|
||||
, double start_pos, double closest_height2, double height, double movez_r
|
||||
, double inv_velocity)
|
||||
{
|
||||
// Calculate number of steps to take
|
||||
double zdist = dist * movez_r;
|
||||
int count = (safe_sqrt(closest_height2 - dist*dist + zdist*zdist)
|
||||
- height - zdist) / step_dist + .5;
|
||||
if (count <= 0 || count > 1000000) {
|
||||
if (count)
|
||||
fprintf(stderr, "ERROR: push_delta_const invalid count"
|
||||
" %d %d %f %f %f %f %f %f %f %f\n"
|
||||
, sc->oid, count, clock_offset, dist, step_dist, start_pos
|
||||
, closest_height2, height, movez_r, inv_velocity);
|
||||
return 0;
|
||||
}
|
||||
check_expand(sc, step_dist > 0., count);
|
||||
|
||||
// Calculate each step time
|
||||
uint64_t *qn = sc->queue_next, *end = &qn[count];
|
||||
clock_offset += 0.5;
|
||||
height += .5 * step_dist;
|
||||
while (qn < end) {
|
||||
double zh = height*movez_r;
|
||||
double v = safe_sqrt(closest_height2 - height*height + zh*zh);
|
||||
double pos = start_pos + zh + (step_dist > 0. ? -v : v);
|
||||
*qn++ = clock_offset + pos * inv_velocity;
|
||||
height += step_dist;
|
||||
}
|
||||
sc->queue_next = qn;
|
||||
return step_dist > 0. ? count : -count;
|
||||
}
|
||||
|
||||
// Schedule 'count' number of steps using delta kinematic acceleration
|
||||
int32_t
|
||||
stepcompress_push_delta_accel(
|
||||
struct stepcompress *sc, double clock_offset, double dist, double step_dist
|
||||
, double start_pos, double closest_height2, double height, double movez_r
|
||||
, double accel_multiplier)
|
||||
{
|
||||
// Calculate number of steps to take
|
||||
double zdist = dist * movez_r;
|
||||
int count = (safe_sqrt(closest_height2 - dist*dist + zdist*zdist)
|
||||
- height - zdist) / step_dist + .5;
|
||||
if (count <= 0 || count > 1000000) {
|
||||
if (count)
|
||||
fprintf(stderr, "ERROR: push_delta_accel invalid count"
|
||||
" %d %d %f %f %f %f %f %f %f %f\n"
|
||||
, sc->oid, count, clock_offset, dist, step_dist, start_pos
|
||||
, closest_height2, height, movez_r, accel_multiplier);
|
||||
return 0;
|
||||
}
|
||||
check_expand(sc, step_dist > 0., count);
|
||||
|
||||
// Calculate each step time
|
||||
uint64_t *qn = sc->queue_next, *end = &qn[count];
|
||||
clock_offset += 0.5;
|
||||
height += .5 * step_dist;
|
||||
while (qn < end) {
|
||||
double zh = height*movez_r;
|
||||
double v = safe_sqrt(closest_height2 - height*height + zh*zh);
|
||||
double pos = start_pos + zh + (step_dist > 0. ? -v : v);
|
||||
v = safe_sqrt(pos * accel_multiplier);
|
||||
*qn++ = clock_offset + (accel_multiplier >= 0. ? v : -v);
|
||||
height += step_dist;
|
||||
}
|
||||
sc->queue_next = qn;
|
||||
return step_dist > 0. ? count : -count;
|
||||
}
|
||||
|
||||
// Reset the internal state of the stepcompress object
|
||||
void
|
||||
stepcompress_reset(struct stepcompress *sc, uint64_t last_step_clock)
|
||||
|
|
|
@ -4,7 +4,7 @@
|
|||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import math, logging, time
|
||||
import cartesian
|
||||
import cartesian, delta
|
||||
|
||||
EXTRUDE_DIFF_IGNORE = 1.02
|
||||
|
||||
|
@ -159,7 +159,10 @@ class ToolHead:
|
|||
self.printer = printer
|
||||
self.reactor = printer.reactor
|
||||
self.extruder = printer.objects.get('extruder')
|
||||
self.kin = cartesian.CartKinematics(printer, config)
|
||||
kintypes = {'cartesian': cartesian.CartKinematics,
|
||||
'delta': delta.DeltaKinematics}
|
||||
kin = config.get('kinematics', 'cartesian')
|
||||
self.kin = kintypes[kin](printer, config)
|
||||
self.max_speed, self.max_accel = self.kin.get_max_speed()
|
||||
self.junction_deviation = config.getfloat('junction_deviation', 0.02)
|
||||
self.move_queue = MoveQueue()
|
||||
|
|
Loading…
Reference in New Issue