cartesian: Separate out cartesian robot handling from ToolHead class

Separate out the low-level stepper motor kinematics handling from the
ToolHead class into its own class.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2016-07-07 15:20:18 -04:00
parent 20ae4e5d98
commit 861f5a5387
1 changed files with 112 additions and 90 deletions

View File

@ -12,12 +12,99 @@ import lookahead, stepper, homing
StepList = (0, 1, 2, 3) StepList = (0, 1, 2, 3)
class CartKinematics:
def __init__(self, printer, config):
steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
for n in steppers]
self.stepper_pos = [0, 0, 0, 0]
def build_config(self):
for stepper in self.steppers:
stepper.build_config()
def set_position(self, newpos):
self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
for i in StepList]
def get_max_xy_speed(self):
max_xy_speed = min(s.max_step_velocity*s.step_dist
for s in self.steppers[:2])
max_xy_accel = min(s.max_step_accel*s.step_dist
for s in self.steppers[:2])
return max_xy_speed, max_xy_accel
def get_max_speed(self, axes_d, move_d):
# Calculate max speed and accel for a given move
velocity_factor = min(
[self.steppers[i].max_step_velocity
* self.steppers[i].step_dist / abs(axes_d[i])
for i in StepList if axes_d[i]])
accel_factor = min(
[self.steppers[i].max_step_accel
* self.steppers[i].step_dist / abs(axes_d[i])
for i in StepList if axes_d[i]])
return velocity_factor * move_d, accel_factor * move_d
def get_max_e_speed(self):
s = self.steppers[3]
return s.max_step_velocity*s.step_dist, s.max_step_accel*s.step_dist
def home(self, toolhead, axis):
# Each axis is homed independently and in order
homing_state = homing.Homing(toolhead, self.steppers) # XXX
for a in axis:
homing_state.plan_home(a)
return homing_state
def motor_off(self, move_time):
for stepper in self.steppers:
stepper.motor_enable(move_time, 0)
def move(self, move_time, move):
inv_accel = 1. / move.accel
inv_cruise_v = 1. / move.cruise_v
for i in StepList:
new_step_pos = int(move.pos[i]*self.steppers[i].inv_step_dist + 0.5)
steps = new_step_pos - self.stepper_pos[i]
if not steps:
continue
self.stepper_pos[i] = new_step_pos
sdir = 0
if steps < 0:
sdir = 1
steps = -steps
clock_offset, clock_freq, so = self.steppers[i].prep_move(
sdir, move_time)
step_dist = move.move_d / steps
step_offset = 0.5
# Acceleration steps
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_clock_offset = move.start_v * inv_accel * clock_freq
accel_sqrt_offset = accel_clock_offset**2
accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
accel_steps = move.accel_r * steps
step_offset = so.step_sqrt(
accel_steps, step_offset, clock_offset - accel_clock_offset
, accel_sqrt_offset, accel_multiplier)
clock_offset += move.accel_t * clock_freq
# Cruising steps
#t = pos/cruise_v
cruise_multiplier = step_dist * inv_cruise_v * clock_freq
cruise_steps = move.cruise_r * steps
step_offset = so.step_factor(
cruise_steps, step_offset, clock_offset, cruise_multiplier)
clock_offset += move.cruise_t * clock_freq
# Deceleration steps
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
decel_clock_offset = move.cruise_v * inv_accel * clock_freq
decel_sqrt_offset = decel_clock_offset**2
decel_steps = move.decel_r * steps
so.step_sqrt(
decel_steps, step_offset, clock_offset + decel_clock_offset
, decel_sqrt_offset, -accel_multiplier)
class Move: class Move:
def __init__(self, toolhead, pos, move_d, axes_d, speed, accel): def __init__(self, toolhead, pos, move_d, axes_d, speed, accel):
self.toolhead = toolhead self.toolhead = toolhead
self.pos = tuple(pos) self.pos = tuple(pos)
self.axes_d = axes_d
self.move_d = move_d self.move_d = move_d
self.axes_d = axes_d
self.accel = accel
self.junction_max = speed**2 self.junction_max = speed**2
self.junction_delta = 2.0 * move_d * accel self.junction_delta = 2.0 * move_d * accel
self.junction_start_max = 0. self.junction_start_max = 0.
@ -35,8 +122,8 @@ class Move:
junction_cos_theta = max(junction_cos_theta, -0.999999) junction_cos_theta = max(junction_cos_theta, -0.999999)
sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta)); sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2) R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
self.junction_start_max = min(R * self.toolhead.max_xy_accel, self.junction_start_max = min(
self.junction_max, prev_move.junction_max) R * self.accel, self.junction_max, prev_move.junction_max)
def process(self, junction_start, junction_end): def process(self, junction_start, junction_end):
# Determine accel, cruise, and decel portions of the move # Determine accel, cruise, and decel portions of the move
junction_cruise = self.junction_max junction_cruise = self.junction_max
@ -49,64 +136,19 @@ class Move:
decel_r = 1.0 - accel_r decel_r = 1.0 - accel_r
cruise_r = 0. cruise_r = 0.
junction_cruise = junction_start + accel_r*self.junction_delta junction_cruise = junction_start + accel_r*self.junction_delta
self.accel_r, self.cruise_r, self.decel_r = accel_r, cruise_r, decel_r
# Determine the move velocities and time spent in each portion # Determine the move velocities and time spent in each portion
start_v = math.sqrt(junction_start) start_v = math.sqrt(junction_start)
cruise_v = math.sqrt(junction_cruise) cruise_v = math.sqrt(junction_cruise)
end_v = math.sqrt(junction_end) end_v = math.sqrt(junction_end)
inv_cruise_v = 1. / cruise_v self.start_v, self.cruise_v, self.end_v = start_v, cruise_v, end_v
inv_accel = 2.0 * self.move_d * inv_junction_delta accel_t = 2.0 * self.move_d * accel_r / (start_v + cruise_v)
accel_t = 2.0 * self.move_d * accel_r / (start_v+cruise_v) cruise_t = self.move_d * cruise_r / cruise_v
cruise_t = self.move_d * cruise_r * inv_cruise_v decel_t = 2.0 * self.move_d * decel_r / (end_v + cruise_v)
decel_t = 2.0 * self.move_d * decel_r / (end_v+cruise_v) self.accel_t, self.cruise_t, self.decel_t = accel_t, cruise_t, decel_t
# Generate step times for the move
#logging.debug("Move: %s v=%.2f/%.2f/%.2f mt=%.3f st=%.3f %.3f %.3f" % (
# self.relsteps, start_v, cruise_v, end_v, move_t
# , next_move_time, accel_r, cruise_r))
# Calculate step times for the move
next_move_time = self.toolhead.get_next_move_time() next_move_time = self.toolhead.get_next_move_time()
for i in StepList: self.toolhead.kin.move(next_move_time, self)
new_step_pos = int(
self.pos[i]*self.toolhead.steppers[i].inv_step_dist + 0.5)
steps = new_step_pos - self.toolhead.stepper_pos[i]
if not steps:
continue
self.toolhead.stepper_pos[i] = new_step_pos
sdir = 0
if steps < 0:
sdir = 1
steps = -steps
clock_offset, clock_freq, so = self.toolhead.steppers[i].prep_move(
sdir, next_move_time)
step_dist = self.move_d / steps
step_offset = 0.5
# Acceleration steps
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
accel_clock_offset = start_v * inv_accel * clock_freq
accel_sqrt_offset = accel_clock_offset**2
accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
accel_steps = accel_r * steps
step_offset = so.step_sqrt(
accel_steps, step_offset, clock_offset - accel_clock_offset
, accel_sqrt_offset, accel_multiplier)
clock_offset += accel_t * clock_freq
# Cruising steps
#t = pos/cruise_v
cruise_multiplier = step_dist * inv_cruise_v * clock_freq
cruise_steps = cruise_r * steps
step_offset = so.step_factor(
cruise_steps, step_offset, clock_offset, cruise_multiplier)
clock_offset += cruise_t * clock_freq
# Deceleration steps
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
decel_clock_offset = cruise_v * inv_accel * clock_freq
decel_sqrt_offset = decel_clock_offset**2
decel_steps = decel_r * steps
so.step_sqrt(
decel_steps, step_offset, clock_offset + decel_clock_offset
, decel_sqrt_offset, -accel_multiplier)
self.toolhead.update_move_time(accel_t + cruise_t + decel_t) self.toolhead.update_move_time(accel_t + cruise_t + decel_t)
STALL_TIME = 0.100 STALL_TIME = 0.100
@ -115,18 +157,12 @@ class ToolHead:
def __init__(self, printer, config): def __init__(self, printer, config):
self.printer = printer self.printer = printer
self.reactor = printer.reactor self.reactor = printer.reactor
steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e'] self.kin = CartKinematics(printer, config)
self.steppers = [stepper.PrinterStepper(printer, config.getsection(n)) self.max_xy_speed, self.max_xy_accel = self.kin.get_max_xy_speed()
for n in steppers]
self.max_xy_speed = min(s.max_step_velocity*s.step_dist
for s in self.steppers[:2])
self.max_xy_accel = min(s.max_step_accel*s.step_dist
for s in self.steppers[:2])
self.junction_deviation = config.getfloat('junction_deviation', 0.02) self.junction_deviation = config.getfloat('junction_deviation', 0.02)
dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.) dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.)
self.move_queue = lookahead.MoveQueue(dummy_move) self.move_queue = lookahead.MoveQueue(dummy_move)
self.commanded_pos = [0., 0., 0., 0.] self.commanded_pos = [0., 0., 0., 0.]
self.stepper_pos = [0, 0, 0, 0]
# Print time tracking # Print time tracking
self.buffer_time_high = config.getfloat('buffer_time_high', 5.000) self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
self.buffer_time_low = config.getfloat('buffer_time_low', 0.150) self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
@ -137,8 +173,7 @@ class ToolHead:
self.motor_off_time = self.reactor.NEVER self.motor_off_time = self.reactor.NEVER
self.flush_timer = self.reactor.register_timer(self.flush_handler) self.flush_timer = self.reactor.register_timer(self.flush_handler)
def build_config(self): def build_config(self):
for stepper in self.steppers: self.kin.build_config()
stepper.build_config()
# Print time tracking # Print time tracking
def update_move_time(self, movetime): def update_move_time(self, movetime):
self.print_time += movetime self.print_time += movetime
@ -205,30 +240,22 @@ class ToolHead:
def set_position(self, newpos): def set_position(self, newpos):
self.move_queue.flush() self.move_queue.flush()
self.commanded_pos[:] = newpos self.commanded_pos[:] = newpos
self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5) self.kin.set_position(newpos)
for i in StepList]
def _move_with_z(self, newpos, axes_d, speed): def _move_with_z(self, newpos, axes_d, speed):
self.move_queue.flush() self.move_queue.flush()
# Limit velocity to max for each stepper
move_d = math.sqrt(sum([d*d for d in axes_d[:3]])) move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
velocity_factor = min( # Limit velocity and accel to max for each stepper
[self.steppers[i].max_step_velocity kin_speed, kin_accel = self.kin.get_max_speed(axes_d, move_d)
* self.steppers[i].step_dist / abs(axes_d[i]) speed = min(speed, self.max_xy_speed, kin_speed)
for i in StepList if axes_d[i]]) accel = min(self.max_xy_accel, kin_accel)
speed = min(speed, self.max_xy_speed, velocity_factor * move_d) # Generate and execute move
# Find max acceleration factor
accel_factor = min(
[self.steppers[i].max_step_accel
* self.steppers[i].step_dist / abs(axes_d[i])
for i in StepList if axes_d[i]])
accel = min(self.max_xy_accel, accel_factor * move_d)
move = Move(self, newpos, move_d, axes_d, speed, accel) move = Move(self, newpos, move_d, axes_d, speed, accel)
move.process(0., 0.) move.process(0., 0.)
def _move_only_e(self, newpos, axes_d, speed): def _move_only_e(self, newpos, axes_d, speed):
self.move_queue.flush() self.move_queue.flush()
s = self.steppers[3] kin_speed, kin_accel = self.kin.get_max_e_speed()
speed = min(speed, self.max_xy_speed, s.max_step_velocity * s.step_dist) speed = min(speed, self.max_xy_speed, kin_speed)
accel = min(self.max_xy_accel, s.max_step_accel * s.step_dist) accel = min(self.max_xy_accel, kin_accel)
move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel) move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel)
move.process(0., 0.) move.process(0., 0.)
def move(self, newpos, speed, sloppy=False): def move(self, newpos, speed, sloppy=False):
@ -248,18 +275,13 @@ class ToolHead:
move.calc_junction(self.move_queue.prev_move()) move.calc_junction(self.move_queue.prev_move())
self.move_queue.add_move(move) self.move_queue.add_move(move)
def home(self, axis): def home(self, axis):
# Each axis is homed independently and in order return self.kin.home(self, axis)
homing_state = homing.Homing(self, self.steppers)
for a in axis:
homing_state.plan_home(a)
return homing_state
def dwell(self, delay): def dwell(self, delay):
self.get_last_move_time() self.get_last_move_time()
self.update_move_time(delay) self.update_move_time(delay)
def motor_off(self): def motor_off(self):
self.dwell(STALL_TIME) self.dwell(STALL_TIME)
last_move_time = self.get_last_move_time() last_move_time = self.get_last_move_time()
for stepper in self.steppers: self.kin.motor_off(last_move_time)
stepper.motor_enable(last_move_time, 0)
self.dwell(STALL_TIME) self.dwell(STALL_TIME)
logging.debug('; Max time of %f' % (last_move_time,)) logging.debug('; Max time of %f' % (last_move_time,))