cartesian: Separate out cartesian robot handling from ToolHead class
Separate out the low-level stepper motor kinematics handling from the ToolHead class into its own class. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
parent
20ae4e5d98
commit
861f5a5387
|
@ -12,12 +12,99 @@ import lookahead, stepper, homing
|
||||||
|
|
||||||
StepList = (0, 1, 2, 3)
|
StepList = (0, 1, 2, 3)
|
||||||
|
|
||||||
|
class CartKinematics:
|
||||||
|
def __init__(self, printer, config):
|
||||||
|
steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
|
||||||
|
self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
|
||||||
|
for n in steppers]
|
||||||
|
self.stepper_pos = [0, 0, 0, 0]
|
||||||
|
def build_config(self):
|
||||||
|
for stepper in self.steppers:
|
||||||
|
stepper.build_config()
|
||||||
|
def set_position(self, newpos):
|
||||||
|
self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
|
||||||
|
for i in StepList]
|
||||||
|
def get_max_xy_speed(self):
|
||||||
|
max_xy_speed = min(s.max_step_velocity*s.step_dist
|
||||||
|
for s in self.steppers[:2])
|
||||||
|
max_xy_accel = min(s.max_step_accel*s.step_dist
|
||||||
|
for s in self.steppers[:2])
|
||||||
|
return max_xy_speed, max_xy_accel
|
||||||
|
def get_max_speed(self, axes_d, move_d):
|
||||||
|
# Calculate max speed and accel for a given move
|
||||||
|
velocity_factor = min(
|
||||||
|
[self.steppers[i].max_step_velocity
|
||||||
|
* self.steppers[i].step_dist / abs(axes_d[i])
|
||||||
|
for i in StepList if axes_d[i]])
|
||||||
|
accel_factor = min(
|
||||||
|
[self.steppers[i].max_step_accel
|
||||||
|
* self.steppers[i].step_dist / abs(axes_d[i])
|
||||||
|
for i in StepList if axes_d[i]])
|
||||||
|
return velocity_factor * move_d, accel_factor * move_d
|
||||||
|
def get_max_e_speed(self):
|
||||||
|
s = self.steppers[3]
|
||||||
|
return s.max_step_velocity*s.step_dist, s.max_step_accel*s.step_dist
|
||||||
|
def home(self, toolhead, axis):
|
||||||
|
# Each axis is homed independently and in order
|
||||||
|
homing_state = homing.Homing(toolhead, self.steppers) # XXX
|
||||||
|
for a in axis:
|
||||||
|
homing_state.plan_home(a)
|
||||||
|
return homing_state
|
||||||
|
def motor_off(self, move_time):
|
||||||
|
for stepper in self.steppers:
|
||||||
|
stepper.motor_enable(move_time, 0)
|
||||||
|
def move(self, move_time, move):
|
||||||
|
inv_accel = 1. / move.accel
|
||||||
|
inv_cruise_v = 1. / move.cruise_v
|
||||||
|
for i in StepList:
|
||||||
|
new_step_pos = int(move.pos[i]*self.steppers[i].inv_step_dist + 0.5)
|
||||||
|
steps = new_step_pos - self.stepper_pos[i]
|
||||||
|
if not steps:
|
||||||
|
continue
|
||||||
|
self.stepper_pos[i] = new_step_pos
|
||||||
|
sdir = 0
|
||||||
|
if steps < 0:
|
||||||
|
sdir = 1
|
||||||
|
steps = -steps
|
||||||
|
clock_offset, clock_freq, so = self.steppers[i].prep_move(
|
||||||
|
sdir, move_time)
|
||||||
|
|
||||||
|
step_dist = move.move_d / steps
|
||||||
|
step_offset = 0.5
|
||||||
|
|
||||||
|
# Acceleration steps
|
||||||
|
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
|
||||||
|
accel_clock_offset = move.start_v * inv_accel * clock_freq
|
||||||
|
accel_sqrt_offset = accel_clock_offset**2
|
||||||
|
accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
|
||||||
|
accel_steps = move.accel_r * steps
|
||||||
|
step_offset = so.step_sqrt(
|
||||||
|
accel_steps, step_offset, clock_offset - accel_clock_offset
|
||||||
|
, accel_sqrt_offset, accel_multiplier)
|
||||||
|
clock_offset += move.accel_t * clock_freq
|
||||||
|
# Cruising steps
|
||||||
|
#t = pos/cruise_v
|
||||||
|
cruise_multiplier = step_dist * inv_cruise_v * clock_freq
|
||||||
|
cruise_steps = move.cruise_r * steps
|
||||||
|
step_offset = so.step_factor(
|
||||||
|
cruise_steps, step_offset, clock_offset, cruise_multiplier)
|
||||||
|
clock_offset += move.cruise_t * clock_freq
|
||||||
|
# Deceleration steps
|
||||||
|
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
|
||||||
|
decel_clock_offset = move.cruise_v * inv_accel * clock_freq
|
||||||
|
decel_sqrt_offset = decel_clock_offset**2
|
||||||
|
decel_steps = move.decel_r * steps
|
||||||
|
so.step_sqrt(
|
||||||
|
decel_steps, step_offset, clock_offset + decel_clock_offset
|
||||||
|
, decel_sqrt_offset, -accel_multiplier)
|
||||||
|
|
||||||
class Move:
|
class Move:
|
||||||
def __init__(self, toolhead, pos, move_d, axes_d, speed, accel):
|
def __init__(self, toolhead, pos, move_d, axes_d, speed, accel):
|
||||||
self.toolhead = toolhead
|
self.toolhead = toolhead
|
||||||
self.pos = tuple(pos)
|
self.pos = tuple(pos)
|
||||||
self.axes_d = axes_d
|
|
||||||
self.move_d = move_d
|
self.move_d = move_d
|
||||||
|
self.axes_d = axes_d
|
||||||
|
self.accel = accel
|
||||||
self.junction_max = speed**2
|
self.junction_max = speed**2
|
||||||
self.junction_delta = 2.0 * move_d * accel
|
self.junction_delta = 2.0 * move_d * accel
|
||||||
self.junction_start_max = 0.
|
self.junction_start_max = 0.
|
||||||
|
@ -35,8 +122,8 @@ class Move:
|
||||||
junction_cos_theta = max(junction_cos_theta, -0.999999)
|
junction_cos_theta = max(junction_cos_theta, -0.999999)
|
||||||
sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
|
sin_theta_d2 = math.sqrt(0.5*(1.0-junction_cos_theta));
|
||||||
R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
|
R = self.toolhead.junction_deviation * sin_theta_d2 / (1. - sin_theta_d2)
|
||||||
self.junction_start_max = min(R * self.toolhead.max_xy_accel,
|
self.junction_start_max = min(
|
||||||
self.junction_max, prev_move.junction_max)
|
R * self.accel, self.junction_max, prev_move.junction_max)
|
||||||
def process(self, junction_start, junction_end):
|
def process(self, junction_start, junction_end):
|
||||||
# Determine accel, cruise, and decel portions of the move
|
# Determine accel, cruise, and decel portions of the move
|
||||||
junction_cruise = self.junction_max
|
junction_cruise = self.junction_max
|
||||||
|
@ -49,64 +136,19 @@ class Move:
|
||||||
decel_r = 1.0 - accel_r
|
decel_r = 1.0 - accel_r
|
||||||
cruise_r = 0.
|
cruise_r = 0.
|
||||||
junction_cruise = junction_start + accel_r*self.junction_delta
|
junction_cruise = junction_start + accel_r*self.junction_delta
|
||||||
|
self.accel_r, self.cruise_r, self.decel_r = accel_r, cruise_r, decel_r
|
||||||
# Determine the move velocities and time spent in each portion
|
# Determine the move velocities and time spent in each portion
|
||||||
start_v = math.sqrt(junction_start)
|
start_v = math.sqrt(junction_start)
|
||||||
cruise_v = math.sqrt(junction_cruise)
|
cruise_v = math.sqrt(junction_cruise)
|
||||||
end_v = math.sqrt(junction_end)
|
end_v = math.sqrt(junction_end)
|
||||||
inv_cruise_v = 1. / cruise_v
|
self.start_v, self.cruise_v, self.end_v = start_v, cruise_v, end_v
|
||||||
inv_accel = 2.0 * self.move_d * inv_junction_delta
|
accel_t = 2.0 * self.move_d * accel_r / (start_v + cruise_v)
|
||||||
accel_t = 2.0 * self.move_d * accel_r / (start_v+cruise_v)
|
cruise_t = self.move_d * cruise_r / cruise_v
|
||||||
cruise_t = self.move_d * cruise_r * inv_cruise_v
|
decel_t = 2.0 * self.move_d * decel_r / (end_v + cruise_v)
|
||||||
decel_t = 2.0 * self.move_d * decel_r / (end_v+cruise_v)
|
self.accel_t, self.cruise_t, self.decel_t = accel_t, cruise_t, decel_t
|
||||||
|
# Generate step times for the move
|
||||||
#logging.debug("Move: %s v=%.2f/%.2f/%.2f mt=%.3f st=%.3f %.3f %.3f" % (
|
|
||||||
# self.relsteps, start_v, cruise_v, end_v, move_t
|
|
||||||
# , next_move_time, accel_r, cruise_r))
|
|
||||||
|
|
||||||
# Calculate step times for the move
|
|
||||||
next_move_time = self.toolhead.get_next_move_time()
|
next_move_time = self.toolhead.get_next_move_time()
|
||||||
for i in StepList:
|
self.toolhead.kin.move(next_move_time, self)
|
||||||
new_step_pos = int(
|
|
||||||
self.pos[i]*self.toolhead.steppers[i].inv_step_dist + 0.5)
|
|
||||||
steps = new_step_pos - self.toolhead.stepper_pos[i]
|
|
||||||
if not steps:
|
|
||||||
continue
|
|
||||||
self.toolhead.stepper_pos[i] = new_step_pos
|
|
||||||
sdir = 0
|
|
||||||
if steps < 0:
|
|
||||||
sdir = 1
|
|
||||||
steps = -steps
|
|
||||||
clock_offset, clock_freq, so = self.toolhead.steppers[i].prep_move(
|
|
||||||
sdir, next_move_time)
|
|
||||||
|
|
||||||
step_dist = self.move_d / steps
|
|
||||||
step_offset = 0.5
|
|
||||||
|
|
||||||
# Acceleration steps
|
|
||||||
#t = sqrt(2*pos/accel + (start_v/accel)**2) - start_v/accel
|
|
||||||
accel_clock_offset = start_v * inv_accel * clock_freq
|
|
||||||
accel_sqrt_offset = accel_clock_offset**2
|
|
||||||
accel_multiplier = 2.0 * step_dist * inv_accel * clock_freq**2
|
|
||||||
accel_steps = accel_r * steps
|
|
||||||
step_offset = so.step_sqrt(
|
|
||||||
accel_steps, step_offset, clock_offset - accel_clock_offset
|
|
||||||
, accel_sqrt_offset, accel_multiplier)
|
|
||||||
clock_offset += accel_t * clock_freq
|
|
||||||
# Cruising steps
|
|
||||||
#t = pos/cruise_v
|
|
||||||
cruise_multiplier = step_dist * inv_cruise_v * clock_freq
|
|
||||||
cruise_steps = cruise_r * steps
|
|
||||||
step_offset = so.step_factor(
|
|
||||||
cruise_steps, step_offset, clock_offset, cruise_multiplier)
|
|
||||||
clock_offset += cruise_t * clock_freq
|
|
||||||
# Deceleration steps
|
|
||||||
#t = cruise_v/accel - sqrt((cruise_v/accel)**2 - 2*pos/accel)
|
|
||||||
decel_clock_offset = cruise_v * inv_accel * clock_freq
|
|
||||||
decel_sqrt_offset = decel_clock_offset**2
|
|
||||||
decel_steps = decel_r * steps
|
|
||||||
so.step_sqrt(
|
|
||||||
decel_steps, step_offset, clock_offset + decel_clock_offset
|
|
||||||
, decel_sqrt_offset, -accel_multiplier)
|
|
||||||
self.toolhead.update_move_time(accel_t + cruise_t + decel_t)
|
self.toolhead.update_move_time(accel_t + cruise_t + decel_t)
|
||||||
|
|
||||||
STALL_TIME = 0.100
|
STALL_TIME = 0.100
|
||||||
|
@ -115,18 +157,12 @@ class ToolHead:
|
||||||
def __init__(self, printer, config):
|
def __init__(self, printer, config):
|
||||||
self.printer = printer
|
self.printer = printer
|
||||||
self.reactor = printer.reactor
|
self.reactor = printer.reactor
|
||||||
steppers = ['stepper_x', 'stepper_y', 'stepper_z', 'stepper_e']
|
self.kin = CartKinematics(printer, config)
|
||||||
self.steppers = [stepper.PrinterStepper(printer, config.getsection(n))
|
self.max_xy_speed, self.max_xy_accel = self.kin.get_max_xy_speed()
|
||||||
for n in steppers]
|
|
||||||
self.max_xy_speed = min(s.max_step_velocity*s.step_dist
|
|
||||||
for s in self.steppers[:2])
|
|
||||||
self.max_xy_accel = min(s.max_step_accel*s.step_dist
|
|
||||||
for s in self.steppers[:2])
|
|
||||||
self.junction_deviation = config.getfloat('junction_deviation', 0.02)
|
self.junction_deviation = config.getfloat('junction_deviation', 0.02)
|
||||||
dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.)
|
dummy_move = Move(self, [0.]*4, 0., [0.]*4, 0., 0.)
|
||||||
self.move_queue = lookahead.MoveQueue(dummy_move)
|
self.move_queue = lookahead.MoveQueue(dummy_move)
|
||||||
self.commanded_pos = [0., 0., 0., 0.]
|
self.commanded_pos = [0., 0., 0., 0.]
|
||||||
self.stepper_pos = [0, 0, 0, 0]
|
|
||||||
# Print time tracking
|
# Print time tracking
|
||||||
self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
|
self.buffer_time_high = config.getfloat('buffer_time_high', 5.000)
|
||||||
self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
|
self.buffer_time_low = config.getfloat('buffer_time_low', 0.150)
|
||||||
|
@ -137,8 +173,7 @@ class ToolHead:
|
||||||
self.motor_off_time = self.reactor.NEVER
|
self.motor_off_time = self.reactor.NEVER
|
||||||
self.flush_timer = self.reactor.register_timer(self.flush_handler)
|
self.flush_timer = self.reactor.register_timer(self.flush_handler)
|
||||||
def build_config(self):
|
def build_config(self):
|
||||||
for stepper in self.steppers:
|
self.kin.build_config()
|
||||||
stepper.build_config()
|
|
||||||
# Print time tracking
|
# Print time tracking
|
||||||
def update_move_time(self, movetime):
|
def update_move_time(self, movetime):
|
||||||
self.print_time += movetime
|
self.print_time += movetime
|
||||||
|
@ -205,30 +240,22 @@ class ToolHead:
|
||||||
def set_position(self, newpos):
|
def set_position(self, newpos):
|
||||||
self.move_queue.flush()
|
self.move_queue.flush()
|
||||||
self.commanded_pos[:] = newpos
|
self.commanded_pos[:] = newpos
|
||||||
self.stepper_pos = [int(newpos[i]*self.steppers[i].inv_step_dist + 0.5)
|
self.kin.set_position(newpos)
|
||||||
for i in StepList]
|
|
||||||
def _move_with_z(self, newpos, axes_d, speed):
|
def _move_with_z(self, newpos, axes_d, speed):
|
||||||
self.move_queue.flush()
|
self.move_queue.flush()
|
||||||
# Limit velocity to max for each stepper
|
|
||||||
move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
|
move_d = math.sqrt(sum([d*d for d in axes_d[:3]]))
|
||||||
velocity_factor = min(
|
# Limit velocity and accel to max for each stepper
|
||||||
[self.steppers[i].max_step_velocity
|
kin_speed, kin_accel = self.kin.get_max_speed(axes_d, move_d)
|
||||||
* self.steppers[i].step_dist / abs(axes_d[i])
|
speed = min(speed, self.max_xy_speed, kin_speed)
|
||||||
for i in StepList if axes_d[i]])
|
accel = min(self.max_xy_accel, kin_accel)
|
||||||
speed = min(speed, self.max_xy_speed, velocity_factor * move_d)
|
# Generate and execute move
|
||||||
# Find max acceleration factor
|
|
||||||
accel_factor = min(
|
|
||||||
[self.steppers[i].max_step_accel
|
|
||||||
* self.steppers[i].step_dist / abs(axes_d[i])
|
|
||||||
for i in StepList if axes_d[i]])
|
|
||||||
accel = min(self.max_xy_accel, accel_factor * move_d)
|
|
||||||
move = Move(self, newpos, move_d, axes_d, speed, accel)
|
move = Move(self, newpos, move_d, axes_d, speed, accel)
|
||||||
move.process(0., 0.)
|
move.process(0., 0.)
|
||||||
def _move_only_e(self, newpos, axes_d, speed):
|
def _move_only_e(self, newpos, axes_d, speed):
|
||||||
self.move_queue.flush()
|
self.move_queue.flush()
|
||||||
s = self.steppers[3]
|
kin_speed, kin_accel = self.kin.get_max_e_speed()
|
||||||
speed = min(speed, self.max_xy_speed, s.max_step_velocity * s.step_dist)
|
speed = min(speed, self.max_xy_speed, kin_speed)
|
||||||
accel = min(self.max_xy_accel, s.max_step_accel * s.step_dist)
|
accel = min(self.max_xy_accel, kin_accel)
|
||||||
move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel)
|
move = Move(self, newpos, abs(axes_d[3]), axes_d, speed, accel)
|
||||||
move.process(0., 0.)
|
move.process(0., 0.)
|
||||||
def move(self, newpos, speed, sloppy=False):
|
def move(self, newpos, speed, sloppy=False):
|
||||||
|
@ -248,18 +275,13 @@ class ToolHead:
|
||||||
move.calc_junction(self.move_queue.prev_move())
|
move.calc_junction(self.move_queue.prev_move())
|
||||||
self.move_queue.add_move(move)
|
self.move_queue.add_move(move)
|
||||||
def home(self, axis):
|
def home(self, axis):
|
||||||
# Each axis is homed independently and in order
|
return self.kin.home(self, axis)
|
||||||
homing_state = homing.Homing(self, self.steppers)
|
|
||||||
for a in axis:
|
|
||||||
homing_state.plan_home(a)
|
|
||||||
return homing_state
|
|
||||||
def dwell(self, delay):
|
def dwell(self, delay):
|
||||||
self.get_last_move_time()
|
self.get_last_move_time()
|
||||||
self.update_move_time(delay)
|
self.update_move_time(delay)
|
||||||
def motor_off(self):
|
def motor_off(self):
|
||||||
self.dwell(STALL_TIME)
|
self.dwell(STALL_TIME)
|
||||||
last_move_time = self.get_last_move_time()
|
last_move_time = self.get_last_move_time()
|
||||||
for stepper in self.steppers:
|
self.kin.motor_off(last_move_time)
|
||||||
stepper.motor_enable(last_move_time, 0)
|
|
||||||
self.dwell(STALL_TIME)
|
self.dwell(STALL_TIME)
|
||||||
logging.debug('; Max time of %f' % (last_move_time,))
|
logging.debug('; Max time of %f' % (last_move_time,))
|
||||||
|
|
Loading…
Reference in New Issue