toolhead: Flush trapezoid velocity queue in batches

Load all items from the look-ahead queue into the trapezoid velocity
queue, and then flush that queue by time.  This prevents the host cpu
from being starved on very long moves (which may require a large
number of steps to be generated).  It also improves the overall
performance.

With the batch flushing logic in place, it is no longer necessary to
split homing moves up.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2019-10-29 18:58:45 -04:00
parent 1acaaa98c2
commit 7ca86f1723
1 changed files with 70 additions and 73 deletions

View File

@ -92,27 +92,14 @@ class Move:
self.accel_t = accel_r * self.move_d / ((start_v + cruise_v) * 0.5)
self.cruise_t = cruise_r * self.move_d / cruise_v
self.decel_t = decel_r * self.move_d / ((end_v + cruise_v) * 0.5)
def move(self):
# Generate step times for the move
next_move_time = self.toolhead.get_next_move_time()
if self.is_kinematic_move:
self.toolhead.trapq_append(
self.toolhead.trapq, next_move_time,
self.accel_t, self.cruise_t, self.decel_t,
self.start_pos[0], self.start_pos[1], self.start_pos[2],
self.axes_d[0], self.axes_d[1], self.axes_d[2],
self.start_v, self.cruise_v, self.accel)
if self.axes_d[3]:
self.toolhead.extruder.move(next_move_time, self)
self.toolhead.update_move_time(
self.accel_t + self.cruise_t + self.decel_t)
LOOKAHEAD_FLUSH_TIME = 0.250
# Class to track a list of pending move requests and to facilitate
# "look-ahead" across moves to reduce acceleration between moves.
class MoveQueue:
def __init__(self):
def __init__(self, toolhead):
self.toolhead = toolhead
self.extruder_lookahead = None
self.queue = []
self.leftover = 0
@ -176,8 +163,7 @@ class MoveQueue:
# Allow extruder to do its lookahead
move_count = self.extruder_lookahead(queue, flush_count, lazy)
# Generate step times for all moves ready to be flushed
for move in queue[:move_count]:
move.move()
self.toolhead._process_moves(queue[:move_count])
# Remove processed moves from the queue
self.leftover = flush_count - move_count
del queue[:move_count]
@ -192,6 +178,7 @@ class MoveQueue:
self.flush(lazy=True)
STALL_TIME = 0.100
MOVE_BATCH_TIME = 0.500
DRIP_SEGMENT_TIME = 0.050
DRIP_TIME = 0.150
@ -206,7 +193,7 @@ class ToolHead:
self.all_mcus = [
m for n, m in self.printer.lookup_objects(module='mcu')]
self.mcu = self.all_mcus[0]
self.move_queue = MoveQueue()
self.move_queue = MoveQueue(self)
self.commanded_pos = [0., 0., 0., 0.]
self.printer.register_event_handler("gcode:request_restart",
self._handle_request_restart)
@ -276,8 +263,11 @@ class ToolHead:
self.printer.try_load_module(config, "manual_probe")
self.printer.try_load_module(config, "tuning_tower")
# Print time tracking
def update_move_time(self, movetime, lazy=True):
self.print_time = flush_to_time = self.print_time + movetime
def _update_move_time(self, next_print_time, lazy=True):
batch_time = MOVE_BATCH_TIME
while 1:
flush_to_time = min(self.print_time + batch_time, next_print_time)
self.print_time = flush_to_time
for mh in self.move_handlers:
mh(flush_to_time)
self.trapq_free_moves(self.trapq, flush_to_time)
@ -285,6 +275,8 @@ class ToolHead:
flush_to_time -= self.move_flush_time
for m in self.all_mcus:
m.flush_moves(flush_to_time)
if self.print_time >= next_print_time:
break
def _calc_print_time(self):
curtime = self.reactor.monotonic()
est_print_time = self.mcu.estimated_print_time(curtime)
@ -293,26 +285,33 @@ class ToolHead:
self.last_print_start_time = self.print_time
self.printer.send_event("toolhead:sync_print_time",
curtime, est_print_time, self.print_time)
def get_next_move_time(self):
if not self.special_queuing_state:
return self.print_time
if self.special_queuing_state == "Drip":
# In "Drip" state - wait until ready to send next move
while 1:
if self.drip_completion.test():
raise DripModeEndSignal()
curtime = self.reactor.monotonic()
est_print_time = self.mcu.estimated_print_time(curtime)
wait_time = self.print_time - est_print_time - DRIP_TIME
if wait_time <= 0. or self.mcu.is_fileoutput():
return self.print_time
self.drip_completion.wait(curtime + wait_time)
def _process_moves(self, moves):
# Resync print_time if necessary
if self.special_queuing_state:
if self.special_queuing_state != "Drip":
# Transition from "Flushed"/"Priming" state to main state
self.special_queuing_state = ""
self.need_check_stall = -1.
self.reactor.update_timer(self.flush_timer, self.reactor.NOW)
self._calc_print_time()
return self.print_time
# Queue moves into trapezoid motion queue (trapq)
next_move_time = self.print_time
for move in moves:
if move.is_kinematic_move:
self.trapq_append(
self.trapq, next_move_time,
move.accel_t, move.cruise_t, move.decel_t,
move.start_pos[0], move.start_pos[1], move.start_pos[2],
move.axes_d[0], move.axes_d[1], move.axes_d[2],
move.start_v, move.cruise_v, move.accel)
if move.axes_d[3]:
self.extruder.move(next_move_time, move)
next_move_time += move.accel_t + move.cruise_t + move.decel_t
# Generate steps for moves
if self.special_queuing_state == "Drip":
self._update_drip_move_time(next_move_time)
else:
self._update_move_time(next_move_time)
def _full_flush(self):
# Transition from "Flushed"/"Priming"/main state to "Flushed" state
self.move_queue.flush()
@ -321,7 +320,7 @@ class ToolHead:
self.reactor.update_timer(self.flush_timer, self.reactor.NEVER)
self.move_queue.set_flush_time(self.buffer_time_high)
self.idle_flush_print_time = 0.
self.update_move_time(0., lazy=False)
self._update_move_time(self.print_time, lazy=False)
def _flush_lookahead(self):
if self.special_queuing_state:
return self._full_flush()
@ -394,8 +393,8 @@ class ToolHead:
if self.print_time > self.need_check_stall:
self._check_stall()
def dwell(self, delay):
self.get_last_move_time()
self.update_move_time(delay)
next_print_time = self.get_last_move_time() + max(0., delay)
self._update_move_time(next_print_time)
self._check_stall()
def motor_off(self):
self.dwell(STALL_TIME)
@ -423,41 +422,39 @@ class ToolHead:
self.commanded_pos[3] = extrude_pos
def get_extruder(self):
return self.extruder
# Homing "drip move" handling
def _update_drip_move_time(self, next_print_time):
while self.print_time < next_print_time:
if self.drip_completion.test():
raise DripModeEndSignal()
curtime = self.reactor.monotonic()
est_print_time = self.mcu.estimated_print_time(curtime)
wait_time = self.print_time - est_print_time - DRIP_TIME
if wait_time > 0. and not self.mcu.is_fileoutput():
# Pause before sending more steps
self.drip_completion.wait(curtime + wait_time)
continue
npt = min(self.print_time + DRIP_SEGMENT_TIME, next_print_time)
self._update_move_time(npt)
def drip_move(self, newpos, speed):
# Validate move
move = Move(self, self.commanded_pos, newpos, speed)
if move.axes_d[3]:
raise homing.CommandError("Invalid drip move")
if not move.move_d or not move.is_kinematic_move:
return
self.kin.check_move(move)
speed = math.sqrt(move.max_cruise_v2)
move_accel = move.accel
# Transition to "Flushed" state and then to "Drip" state
self._full_flush()
self.special_queuing_state = "Drip"
self.need_check_stall = self.reactor.NEVER
self.reactor.update_timer(self.flush_timer, self.reactor.NEVER)
self.drip_completion = self.reactor.completion()
# Split move into many tiny moves and queue them
num_moves = max(1, int(math.ceil(move.min_move_t / DRIP_SEGMENT_TIME)))
inv_num_moves = 1. / float(num_moves)
submove_d = [d * inv_num_moves for d in move.axes_d]
prev_pos = move.start_pos
self._calc_print_time()
# Submit move
try:
self.move(newpos, speed)
except homing.CommandError as e:
self._full_flush()
raise
# Transmit move in "drip" mode
try:
for i in range(num_moves-1):
next_pos = [p + d for p, d in zip(prev_pos, submove_d)]
smove = Move(self, prev_pos, next_pos, speed)
smove.limit_speed(speed, move_accel)
self.move_queue.add_move(smove)
prev_pos = next_pos
smove = Move(self, prev_pos, move.end_pos, speed)
smove.limit_speed(speed, move_accel)
self.move_queue.add_move(smove)
self.move_queue.flush()
except DripModeEndSignal as e:
self.move_queue.reset()
self.trapq_free_moves(self.trapq, self.reactor.NEVER)
# Return to "Flushed" state
self._full_flush()
def signal_drip_mode_end(self):