kin_extruder: Move integration code from trapq.c to kin_extruder.c
Move the code that calculates the definitive integral to the kin_extruder.c file. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
parent
8b75bddc0f
commit
730a6d868b
|
@ -12,6 +12,71 @@
|
|||
#include "pyhelper.h" // errorf
|
||||
#include "trapq.h" // move_get_distance
|
||||
|
||||
// Helper code for integrating acceleration
|
||||
static double
|
||||
integrate_accel(struct move *m, double start, double end)
|
||||
{
|
||||
double half_v = .5 * m->start_v, sixth_a = (1. / 3.) * m->half_accel;
|
||||
double si = start * start * (half_v + sixth_a * start);
|
||||
double ei = end * end * (half_v + sixth_a * end);
|
||||
return ei - si;
|
||||
}
|
||||
|
||||
// Calculate the definitive integral on part of a move
|
||||
static double
|
||||
move_integrate(struct move *m, int axis, double start, double end)
|
||||
{
|
||||
if (start < 0.)
|
||||
start = 0.;
|
||||
if (end > m->move_t)
|
||||
end = m->move_t;
|
||||
double base = m->start_pos.axis[axis - 'x'] * (end - start);
|
||||
double integral = integrate_accel(m, start, end);
|
||||
return base + integral * m->axes_r.axis[axis - 'x'];
|
||||
}
|
||||
|
||||
// Calculate the definitive integral for a cartesian axis
|
||||
static double
|
||||
trapq_integrate(struct move *m, int axis, double start, double end)
|
||||
{
|
||||
double res = move_integrate(m, axis, start, end);
|
||||
// Integrate over previous moves
|
||||
struct move *prev = m;
|
||||
while (unlikely(start < 0.)) {
|
||||
prev = list_prev_entry(prev, node);
|
||||
start += prev->move_t;
|
||||
res += move_integrate(prev, axis, start, prev->move_t);
|
||||
}
|
||||
// Integrate over future moves
|
||||
while (unlikely(end > m->move_t)) {
|
||||
end -= m->move_t;
|
||||
m = list_next_entry(m, node);
|
||||
res += move_integrate(m, axis, 0., end);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// Find a move associated with a given time
|
||||
static struct move *
|
||||
trapq_find_move(struct move *m, double *ptime)
|
||||
{
|
||||
double move_time = *ptime;
|
||||
for (;;) {
|
||||
if (unlikely(move_time < 0.)) {
|
||||
// Check previous move in list
|
||||
m = list_prev_entry(m, node);
|
||||
move_time += m->move_t;
|
||||
} else if (unlikely(move_time > m->move_t)) {
|
||||
// Check next move in list
|
||||
move_time -= m->move_t;
|
||||
m = list_next_entry(m, node);
|
||||
} else {
|
||||
*ptime = move_time;
|
||||
return m;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct extruder_stepper {
|
||||
struct stepper_kinematics sk;
|
||||
double pressure_advance_factor, half_smooth_time, inv_smooth_time;
|
||||
|
|
|
@ -86,71 +86,6 @@ move_get_coord(struct move *m, double move_time)
|
|||
.z = m->start_pos.z + m->axes_r.z * move_dist };
|
||||
}
|
||||
|
||||
// Helper code for integrating acceleration
|
||||
static double
|
||||
integrate_accel(struct move *m, double start, double end)
|
||||
{
|
||||
double half_v = .5 * m->start_v, sixth_a = (1. / 3.) * m->half_accel;
|
||||
double si = start * start * (half_v + sixth_a * start);
|
||||
double ei = end * end * (half_v + sixth_a * end);
|
||||
return ei - si;
|
||||
}
|
||||
|
||||
// Calculate the definitive integral on part of a move
|
||||
static double
|
||||
move_integrate(struct move *m, int axis, double start, double end)
|
||||
{
|
||||
if (start < 0.)
|
||||
start = 0.;
|
||||
if (end > m->move_t)
|
||||
end = m->move_t;
|
||||
double base = m->start_pos.axis[axis - 'x'] * (end - start);
|
||||
double integral = integrate_accel(m, start, end);
|
||||
return base + integral * m->axes_r.axis[axis - 'x'];
|
||||
}
|
||||
|
||||
// Calculate the definitive integral for a cartesian axis
|
||||
double
|
||||
trapq_integrate(struct move *m, int axis, double start, double end)
|
||||
{
|
||||
double res = move_integrate(m, axis, start, end);
|
||||
// Integrate over previous moves
|
||||
struct move *prev = m;
|
||||
while (unlikely(start < 0.)) {
|
||||
prev = list_prev_entry(prev, node);
|
||||
start += prev->move_t;
|
||||
res += move_integrate(prev, axis, start, prev->move_t);
|
||||
}
|
||||
// Integrate over future moves
|
||||
while (unlikely(end > m->move_t)) {
|
||||
end -= m->move_t;
|
||||
m = list_next_entry(m, node);
|
||||
res += move_integrate(m, axis, 0., end);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
// Find a move associated with a given time
|
||||
struct move *
|
||||
trapq_find_move(struct move *m, double *ptime)
|
||||
{
|
||||
double move_time = *ptime;
|
||||
for (;;) {
|
||||
if (unlikely(move_time < 0.)) {
|
||||
// Check previous move in list
|
||||
m = list_prev_entry(m, node);
|
||||
move_time += m->move_t;
|
||||
} else if (unlikely(move_time > m->move_t)) {
|
||||
// Check next move in list
|
||||
move_time -= m->move_t;
|
||||
m = list_next_entry(m, node);
|
||||
} else {
|
||||
*ptime = move_time;
|
||||
return m;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define NEVER_TIME 9999999999999999.9
|
||||
|
||||
// Allocate a new 'trapq' object
|
||||
|
|
|
@ -32,8 +32,6 @@ void trapq_append(struct trapq *tq, double print_time
|
|||
, double start_v, double cruise_v, double accel);
|
||||
double move_get_distance(struct move *m, double move_time);
|
||||
struct coord move_get_coord(struct move *m, double move_time);
|
||||
double trapq_integrate(struct move *m, int axis, double start, double end);
|
||||
struct move *trapq_find_move(struct move *m, double *ptime);
|
||||
struct trapq *trapq_alloc(void);
|
||||
void trapq_free(struct trapq *tq);
|
||||
void trapq_check_sentinels(struct trapq *tq);
|
||||
|
|
Loading…
Reference in New Issue