stm32f1: Move ADC and SPI code from gpio.c to spi.c and adc.c

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2018-11-23 12:01:00 -05:00
parent 581b1439f3
commit 6b108aa885
5 changed files with 238 additions and 217 deletions

View File

@ -17,6 +17,8 @@ CFLAGS_klipper.elf += --specs=nano.specs --specs=nosys.specs
# Add source files # Add source files
src-y += stm32f1/main.c stm32f1/timer.c stm32f1/gpio.c src-y += stm32f1/main.c stm32f1/timer.c stm32f1/gpio.c
src-$(CONFIG_HAVE_GPIO_ADC) += stm32f1/adc.c
src-$(CONFIG_HAVE_GPIO_SPI) += stm32f1/spi.c
src-y += $(addprefix ../, $(wildcard lib/hal-stm32f1/source/stm32f1xx_ll_*.c)) src-y += $(addprefix ../, $(wildcard lib/hal-stm32f1/source/stm32f1xx_ll_*.c))
src-y += generic/crc16_ccitt.c generic/armcm_irq.c generic/timer_irq.c src-y += generic/crc16_ccitt.c generic/armcm_irq.c generic/timer_irq.c
src-y += ../lib/cmsis-stm32f1/source/system_stm32f1xx.c src-y += ../lib/cmsis-stm32f1/source/system_stm32f1xx.c

109
src/stm32f1/adc.c Normal file
View File

@ -0,0 +1,109 @@
// ADC functions on STM32F1
//
// Copyright (C) 2018 Grigori Goronzy <greg@kinoho.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <stdbool.h> // bool
#include "board/io.h" // readb
#include "command.h" // shutdown
#include "compiler.h" // ARRAY_SIZE
#include "gpio.h" // gpio_adc_setup
#include "internal.h" // GPIO
#include "stm32f1xx_ll_adc.h" // LL_ADC_REG_ReadConversionData12
#include "stm32f1xx_ll_gpio.h" // LL_GPIO_SetPinMode
#include "sched.h" // sched_shutdown
DECL_CONSTANT(ADC_MAX, 4095);
#define ADC_DELAY (240 * 8)
static bool adc_busy;
static uint32_t adc_current_channel;
static const uint8_t adc_pins[] = {
GPIO('A', 0), GPIO('A', 1), GPIO('A', 2), GPIO('A', 3),
GPIO('A', 4), GPIO('A', 5), GPIO('A', 6), GPIO('A', 7),
GPIO('B', 0), GPIO('B', 1), GPIO('C', 0), GPIO('C', 1),
GPIO('C', 2), GPIO('C', 3), GPIO('C', 4), GPIO('C', 5)
};
static const uint32_t adc_channels[] = {
LL_ADC_CHANNEL_0,
LL_ADC_CHANNEL_1,
LL_ADC_CHANNEL_2,
LL_ADC_CHANNEL_3,
LL_ADC_CHANNEL_4,
LL_ADC_CHANNEL_5,
LL_ADC_CHANNEL_6,
LL_ADC_CHANNEL_7,
LL_ADC_CHANNEL_8,
LL_ADC_CHANNEL_9,
LL_ADC_CHANNEL_10,
LL_ADC_CHANNEL_11,
LL_ADC_CHANNEL_12,
LL_ADC_CHANNEL_13,
LL_ADC_CHANNEL_14,
LL_ADC_CHANNEL_15,
};
struct gpio_adc
gpio_adc_setup(uint8_t pin)
{
// Find pin in adc_pins table
int chan;
for (chan=0; ; chan++) {
if (chan >= ARRAY_SIZE(adc_pins))
shutdown("Not a valid ADC pin");
if (adc_pins[chan] == pin)
break;
}
GPIO_TypeDef *regs = digital_regs[GPIO2PORT(pin)];
uint32_t bit = digital_pins[pin % 16];
LL_GPIO_SetPinMode(regs, bit, LL_GPIO_MODE_ANALOG);
return (struct gpio_adc){ .bit = adc_channels[chan] };
}
// Try to sample a value. Returns zero if sample ready, otherwise
// returns the number of clock ticks the caller should wait before
// retrying this function.
uint32_t
gpio_adc_sample(struct gpio_adc g)
{
/* ADC not busy, start conversion */
if (!readb(&adc_busy)) {
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, g.bit);
LL_ADC_SetChannelSamplingTime(ADC1, g.bit, LL_ADC_SAMPLINGTIME_239CYCLES_5);
LL_ADC_REG_StartConversionSWStart(ADC1);
adc_busy = true;
adc_current_channel = g.bit;
return ADC_DELAY;
/* ADC finished conversion for this channel */
} else if (LL_ADC_IsActiveFlag_EOS(ADC1) &&
readl(&adc_current_channel) == g.bit) {
LL_ADC_ClearFlag_EOS(ADC1);
adc_busy = false;
return 0;
}
/* Wants to sample another channel, or not finished yet */
return ADC_DELAY;
}
// Read a value; use only after gpio_adc_sample() returns zero
uint16_t
gpio_adc_read(struct gpio_adc g)
{
return LL_ADC_REG_ReadConversionData12(ADC1);
}
// Cancel a sample that may have been started with gpio_adc_sample()
void
gpio_adc_cancel_sample(struct gpio_adc g)
{
if (readb(&adc_busy) && readl(&adc_current_channel) == g.bit) {
adc_busy = false;
LL_ADC_ClearFlag_EOS(ADC1);
}
}

View File

@ -4,34 +4,24 @@
// //
// This file may be distributed under the terms of the GNU GPLv3 license. // This file may be distributed under the terms of the GNU GPLv3 license.
#include <stdint.h> // uint32_t #include "board/irq.h" // irq_save
#include <stdbool.h>
#include "autoconf.h" // CONFIG_CLOCK_FREQ
#include "command.h" // shutdown #include "command.h" // shutdown
#include "compiler.h" // ARRAY_SIZE #include "compiler.h" // ARRAY_SIZE
#include "gpio.h" // gpio_out_setup #include "gpio.h" // gpio_out_setup
#include "stm32f1xx.h" #include "internal.h" // GPIO
#include "stm32f1xx_ll_rcc.h" #include "stm32f1xx_ll_gpio.h" // LL_GPIO_SetPinMode
#include "stm32f1xx_ll_gpio.h"
#include "stm32f1xx_ll_adc.h"
#include "stm32f1xx_ll_spi.h"
#include "sched.h" // sched_shutdown #include "sched.h" // sched_shutdown
#include "board/irq.h"
#include "board/io.h"
/**************************************************************** /****************************************************************
* Pin mappings * Pin mappings
****************************************************************/ ****************************************************************/
#define GPIO(PORT, NUM) (((PORT)-'A') * 16 + (NUM)) GPIO_TypeDef *const digital_regs[] = {
#define GPIO2PORT(PIN) ((PIN) / 16)
static GPIO_TypeDef *const digital_regs[] = {
GPIOA, GPIOB, GPIOC, GPIOD, GPIOE GPIOA, GPIOB, GPIOC, GPIOD, GPIOE
}; };
static uint32_t const digital_pins[] = { uint32_t const digital_pins[] = {
LL_GPIO_PIN_0, LL_GPIO_PIN_0,
LL_GPIO_PIN_1, LL_GPIO_PIN_1,
LL_GPIO_PIN_2, LL_GPIO_PIN_2,
@ -136,205 +126,3 @@ gpio_in_read(struct gpio_in g)
{ {
return LL_GPIO_IsInputPinSet(g.regs, g.bit); return LL_GPIO_IsInputPinSet(g.regs, g.bit);
} }
/****************************************************************
* Analog to Digital Converter (ADC) pins
****************************************************************/
DECL_CONSTANT(ADC_MAX, 4095);
#define ADC_DELAY (240 * 8)
static bool adc_busy;
static uint32_t adc_current_channel;
static const uint8_t adc_pins[] = {
GPIO('A', 0), GPIO('A', 1), GPIO('A', 2), GPIO('A', 3),
GPIO('A', 4), GPIO('A', 5), GPIO('A', 6), GPIO('A', 7),
GPIO('B', 0), GPIO('B', 1), GPIO('C', 0), GPIO('C', 1),
GPIO('C', 2), GPIO('C', 3), GPIO('C', 4), GPIO('C', 5)
};
static const uint32_t adc_channels[] = {
LL_ADC_CHANNEL_0,
LL_ADC_CHANNEL_1,
LL_ADC_CHANNEL_2,
LL_ADC_CHANNEL_3,
LL_ADC_CHANNEL_4,
LL_ADC_CHANNEL_5,
LL_ADC_CHANNEL_6,
LL_ADC_CHANNEL_7,
LL_ADC_CHANNEL_8,
LL_ADC_CHANNEL_9,
LL_ADC_CHANNEL_10,
LL_ADC_CHANNEL_11,
LL_ADC_CHANNEL_12,
LL_ADC_CHANNEL_13,
LL_ADC_CHANNEL_14,
LL_ADC_CHANNEL_15,
};
struct gpio_adc
gpio_adc_setup(uint8_t pin)
{
// Find pin in adc_pins table
int chan;
for (chan=0; ; chan++) {
if (chan >= ARRAY_SIZE(adc_pins))
shutdown("Not a valid ADC pin");
if (adc_pins[chan] == pin)
break;
}
GPIO_TypeDef *regs = digital_regs[GPIO2PORT(pin)];
uint32_t bit = digital_pins[pin % 16];
LL_GPIO_SetPinMode(regs, bit, LL_GPIO_MODE_ANALOG);
return (struct gpio_adc){ .bit = adc_channels[chan] };
}
// Try to sample a value. Returns zero if sample ready, otherwise
// returns the number of clock ticks the caller should wait before
// retrying this function.
uint32_t
gpio_adc_sample(struct gpio_adc g)
{
/* ADC not busy, start conversion */
if (!readb(&adc_busy)) {
LL_ADC_REG_SetSequencerRanks(ADC1, LL_ADC_REG_RANK_1, g.bit);
LL_ADC_SetChannelSamplingTime(ADC1, g.bit, LL_ADC_SAMPLINGTIME_239CYCLES_5);
LL_ADC_REG_StartConversionSWStart(ADC1);
adc_busy = true;
adc_current_channel = g.bit;
return ADC_DELAY;
/* ADC finished conversion for this channel */
} else if (LL_ADC_IsActiveFlag_EOS(ADC1) &&
readl(&adc_current_channel) == g.bit) {
LL_ADC_ClearFlag_EOS(ADC1);
adc_busy = false;
return 0;
}
/* Wants to sample another channel, or not finished yet */
return ADC_DELAY;
}
// Read a value; use only after gpio_adc_sample() returns zero
uint16_t
gpio_adc_read(struct gpio_adc g)
{
return LL_ADC_REG_ReadConversionData12(ADC1);
}
// Cancel a sample that may have been started with gpio_adc_sample()
void
gpio_adc_cancel_sample(struct gpio_adc g)
{
if (readb(&adc_busy) && readl(&adc_current_channel) == g.bit) {
adc_busy = false;
LL_ADC_ClearFlag_EOS(ADC1);
}
}
/****************************************************************
* Serial Peripheral Interface (SPI) pins
****************************************************************/
void spi_set_mode(SPI_TypeDef *spi, uint8_t mode)
{
switch (mode) {
case 0:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
break;
case 1:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
break;
case 2:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
break;
case 3:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
break;
default:
shutdown("Invalid SPI mode");
}
}
void spi_set_baudrate(SPI_TypeDef *spi, uint32_t rate)
{
const uint32_t pclk = __LL_RCC_CALC_PCLK1_FREQ(SystemCoreClock, LL_RCC_GetAPB1Prescaler());
const uint32_t prescaler = pclk / rate;
uint32_t setting = LL_SPI_BAUDRATEPRESCALER_DIV256;
if (prescaler <= 2)
setting = LL_SPI_BAUDRATEPRESCALER_DIV2;
else if (prescaler <= 4)
setting = LL_SPI_BAUDRATEPRESCALER_DIV4;
else if (prescaler <= 8)
setting = LL_SPI_BAUDRATEPRESCALER_DIV8;
else if (prescaler <= 16)
setting = LL_SPI_BAUDRATEPRESCALER_DIV16;
else if (prescaler <= 32)
setting = LL_SPI_BAUDRATEPRESCALER_DIV32;
else if (prescaler <= 64)
setting = LL_SPI_BAUDRATEPRESCALER_DIV64;
else if (prescaler <= 128)
setting = LL_SPI_BAUDRATEPRESCALER_DIV128;
LL_SPI_SetBaudRatePrescaler(spi, setting);
}
void spi_init_pins(void)
{
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_13, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_14, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_15, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinOutputType(GPIOB, LL_GPIO_PIN_13, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinPull(GPIOB, LL_GPIO_PIN_14, LL_GPIO_PULL_UP);
LL_GPIO_SetPinOutputType(GPIOB, LL_GPIO_PIN_15, LL_GPIO_OUTPUT_PUSHPULL);
}
struct spi_config
spi_setup(uint32_t bus, uint8_t mode, uint32_t rate)
{
struct spi_config config;
config.config = *SPI2;
if (bus > 0 || !rate)
shutdown("Invalid spi_setup parameters");
spi_init_pins();
spi_set_mode(&config.config, mode);
spi_set_baudrate(&config.config, rate);
return config;
}
void
spi_prepare(struct spi_config config)
{
*SPI2 = config.config;
LL_SPI_Enable(SPI2);
}
void
spi_transfer(struct spi_config config, uint8_t receive_data,
uint8_t len, uint8_t *data)
{
while (len--) {
LL_SPI_TransmitData8(SPI2, *data);
while (!LL_SPI_IsActiveFlag_TXE(SPI2));
if (receive_data) {
while (!LL_SPI_IsActiveFlag_RXNE(SPI2));
*data = LL_SPI_ReceiveData8(SPI2);
}
data++;
}
while (LL_SPI_IsActiveFlag_BSY(SPI2));
LL_SPI_Disable(SPI2);
}

11
src/stm32f1/internal.h Normal file
View File

@ -0,0 +1,11 @@
#ifndef __STM32F1_INTERNAL_H
#define __STM32F1_INTERNAL_H
// Local definitions for STM32F1 code
#define GPIO(PORT, NUM) (((PORT)-'A') * 16 + (NUM))
#define GPIO2PORT(PIN) ((PIN) / 16)
extern GPIO_TypeDef *const digital_regs[];
extern uint32_t const digital_pins[];
#endif // internal.h

111
src/stm32f1/spi.c Normal file
View File

@ -0,0 +1,111 @@
// SPI functions on STM32F1
//
// Copyright (C) 2018 Grigori Goronzy <greg@kinoho.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "command.h" // shutdown
#include "gpio.h" // spi_setup
#include "sched.h" // sched_shutdown
#include "stm32f1xx_ll_gpio.h" // LL_GPIO_SetPinMode
#include "stm32f1xx_ll_rcc.h" // __LL_RCC_CALC_PCLK1_FREQ
#include "stm32f1xx_ll_spi.h" // LL_SPI_Enable
static void spi_set_mode(SPI_TypeDef *spi, uint8_t mode)
{
switch (mode) {
case 0:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
break;
case 1:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_LOW);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
break;
case 2:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_1EDGE);
break;
case 3:
LL_SPI_SetClockPolarity(spi, LL_SPI_POLARITY_HIGH);
LL_SPI_SetClockPhase(spi, LL_SPI_PHASE_2EDGE);
break;
default:
shutdown("Invalid SPI mode");
}
}
static void spi_set_baudrate(SPI_TypeDef *spi, uint32_t rate)
{
const uint32_t pclk = __LL_RCC_CALC_PCLK1_FREQ(SystemCoreClock, LL_RCC_GetAPB1Prescaler());
const uint32_t prescaler = pclk / rate;
uint32_t setting = LL_SPI_BAUDRATEPRESCALER_DIV256;
if (prescaler <= 2)
setting = LL_SPI_BAUDRATEPRESCALER_DIV2;
else if (prescaler <= 4)
setting = LL_SPI_BAUDRATEPRESCALER_DIV4;
else if (prescaler <= 8)
setting = LL_SPI_BAUDRATEPRESCALER_DIV8;
else if (prescaler <= 16)
setting = LL_SPI_BAUDRATEPRESCALER_DIV16;
else if (prescaler <= 32)
setting = LL_SPI_BAUDRATEPRESCALER_DIV32;
else if (prescaler <= 64)
setting = LL_SPI_BAUDRATEPRESCALER_DIV64;
else if (prescaler <= 128)
setting = LL_SPI_BAUDRATEPRESCALER_DIV128;
LL_SPI_SetBaudRatePrescaler(spi, setting);
}
static void spi_init_pins(void)
{
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_13, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_14, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(GPIOB, LL_GPIO_PIN_15, LL_GPIO_MODE_ALTERNATE);
LL_GPIO_SetPinOutputType(GPIOB, LL_GPIO_PIN_13, LL_GPIO_OUTPUT_PUSHPULL);
LL_GPIO_SetPinPull(GPIOB, LL_GPIO_PIN_14, LL_GPIO_PULL_UP);
LL_GPIO_SetPinOutputType(GPIOB, LL_GPIO_PIN_15, LL_GPIO_OUTPUT_PUSHPULL);
}
struct spi_config
spi_setup(uint32_t bus, uint8_t mode, uint32_t rate)
{
struct spi_config config;
config.config = *SPI2;
if (bus > 0 || !rate)
shutdown("Invalid spi_setup parameters");
spi_init_pins();
spi_set_mode(&config.config, mode);
spi_set_baudrate(&config.config, rate);
return config;
}
void
spi_prepare(struct spi_config config)
{
*SPI2 = config.config;
LL_SPI_Enable(SPI2);
}
void
spi_transfer(struct spi_config config, uint8_t receive_data,
uint8_t len, uint8_t *data)
{
while (len--) {
LL_SPI_TransmitData8(SPI2, *data);
while (!LL_SPI_IsActiveFlag_TXE(SPI2));
if (receive_data) {
while (!LL_SPI_IsActiveFlag_RXNE(SPI2));
*data = LL_SPI_ReceiveData8(SPI2);
}
data++;
}
while (LL_SPI_IsActiveFlag_BSY(SPI2));
LL_SPI_Disable(SPI2);
}