gcode_arcs: support XY, XZ and YZ planes
add G17, G18 and G19 commands to select arc planes enhance G2/G3 to support arc moves in XY, XZ and YZ planes Signed-off-by: Andrew Mirsky <andrew@mirsky.net>
This commit is contained in:
parent
c7f323e863
commit
0c5c87d7c0
|
@ -549,8 +549,9 @@ clears any error state from the micro-controller.
|
|||
The following standard G-Code commands are available if a
|
||||
[gcode_arcs config section](Config_Reference.md#gcode_arcs) is
|
||||
enabled:
|
||||
- Controlled Arc Move (G2 or G3): `G2 [X<pos>] [Y<pos>] [Z<pos>]
|
||||
[E<pos>] [F<speed>] I<value> J<value>`
|
||||
- Arc Move Clockwise (G2), Arc Move Counter-clockwise (G3): `G2|G3 [X<pos>] [Y<pos>] [Z<pos>]
|
||||
[E<pos>] [F<speed>] I<value> J<value>|I<value> K<value>|J<value> K<value>`
|
||||
- Arc Plane Select: G17 (XY plane), G18 (XZ plane), G19 (YZ plane)
|
||||
|
||||
### [gcode_macro]
|
||||
|
||||
|
|
|
@ -7,12 +7,25 @@
|
|||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import math
|
||||
|
||||
from gcode import Coord
|
||||
# Coordinates created by this are converted into G1 commands.
|
||||
#
|
||||
# note: only IJ version available
|
||||
# supports XY, XZ & YZ planes with remaining axis as helical
|
||||
|
||||
# Enum
|
||||
ARC_PLANE_X_Y = 0
|
||||
ARC_PLANE_X_Z = 1
|
||||
ARC_PLANE_Y_Z = 2
|
||||
|
||||
# Enum
|
||||
X_AXIS = 0
|
||||
Y_AXIS = 1
|
||||
Z_AXIS = 2
|
||||
E_AXIS = 3
|
||||
|
||||
|
||||
class ArcSupport:
|
||||
|
||||
def __init__(self, config):
|
||||
self.printer = config.get_printer()
|
||||
self.mm_per_arc_segment = config.getfloat('resolution', 1., above=0.0)
|
||||
|
@ -22,12 +35,28 @@ class ArcSupport:
|
|||
self.gcode.register_command("G2", self.cmd_G2)
|
||||
self.gcode.register_command("G3", self.cmd_G3)
|
||||
|
||||
self.gcode.register_command("G17", self.cmd_G17)
|
||||
self.gcode.register_command("G18", self.cmd_G18)
|
||||
self.gcode.register_command("G19", self.cmd_G19)
|
||||
|
||||
# backwards compatibility, prior implementation only supported XY
|
||||
self.plane = ARC_PLANE_X_Y
|
||||
|
||||
def cmd_G2(self, gcmd):
|
||||
self._cmd_inner(gcmd, True)
|
||||
|
||||
def cmd_G3(self, gcmd):
|
||||
self._cmd_inner(gcmd, False)
|
||||
|
||||
def cmd_G17(self, gcmd):
|
||||
self.plane = ARC_PLANE_X_Y
|
||||
|
||||
def cmd_G18(self, gcmd):
|
||||
self.plane = ARC_PLANE_X_Z
|
||||
|
||||
def cmd_G19(self, gcmd):
|
||||
self.plane = ARC_PLANE_Y_Z
|
||||
|
||||
def _cmd_inner(self, gcmd, clockwise):
|
||||
gcodestatus = self.gcode_move.get_status()
|
||||
if not gcodestatus['absolute_coordinates']:
|
||||
|
@ -35,21 +64,33 @@ class ArcSupport:
|
|||
currentPos = gcodestatus['gcode_position']
|
||||
|
||||
# Parse parameters
|
||||
asX = gcmd.get_float("X", currentPos[0])
|
||||
asY = gcmd.get_float("Y", currentPos[1])
|
||||
asZ = gcmd.get_float("Z", currentPos[2])
|
||||
asTarget = Coord(x=gcmd.get_float("X", currentPos[0]),
|
||||
y=gcmd.get_float("Y", currentPos[1]),
|
||||
z=gcmd.get_float("Z", currentPos[2]),
|
||||
e=None)
|
||||
|
||||
if gcmd.get_float("R", None) is not None:
|
||||
raise gcmd.error("G2/G3 does not support R moves")
|
||||
asI = gcmd.get_float("I", 0.)
|
||||
asJ = gcmd.get_float("J", 0.)
|
||||
if not asI and not asJ:
|
||||
raise gcmd.error("G2/G3 neither I nor J given")
|
||||
|
||||
# determine the plane coordinates and the helical axis
|
||||
asPlanar = [ gcmd.get_float(a, 0.) for i,a in enumerate('IJ') ]
|
||||
axes = (X_AXIS, Y_AXIS, Z_AXIS)
|
||||
if self.plane == ARC_PLANE_X_Z:
|
||||
asPlanar = [ gcmd.get_float(a, 0.) for i,a in enumerate('IK') ]
|
||||
axes = (X_AXIS, Z_AXIS, Y_AXIS)
|
||||
elif self.plane == ARC_PLANE_Y_Z:
|
||||
asPlanar = [ gcmd.get_float(a, 0.) for i,a in enumerate('JK') ]
|
||||
axes = (Y_AXIS, Z_AXIS, X_AXIS)
|
||||
|
||||
if not asPlanar[0] or not asPlanar[1]:
|
||||
raise gcmd.error("G2/G3 requires IJ, IK or JK parameters")
|
||||
|
||||
asE = gcmd.get_float("E", None)
|
||||
asF = gcmd.get_float("F", None)
|
||||
|
||||
# Build list of linear coordinates to move to
|
||||
coords = self.planArc(currentPos, [asX, asY, asZ], [asI, asJ],
|
||||
clockwise)
|
||||
# Build list of linear coordinates to move
|
||||
coords = self.planArc(currentPos, asTarget, asPlanar,
|
||||
clockwise, *axes)
|
||||
e_per_move = e_base = 0.
|
||||
if asE is not None:
|
||||
if gcodestatus['absolute_extrude']:
|
||||
|
@ -74,37 +115,37 @@ class ArcSupport:
|
|||
# The arc is approximated by generating many small linear segments.
|
||||
# The length of each segment is configured in MM_PER_ARC_SEGMENT
|
||||
# Arcs smaller then this value, will be a Line only
|
||||
def planArc(self, currentPos, targetPos, offset, clockwise):
|
||||
#
|
||||
# alpha and beta axes are the current plane, helical axis is linear travel
|
||||
def planArc(self, currentPos, targetPos, offset, clockwise,
|
||||
alpha_axis, beta_axis, helical_axis):
|
||||
# todo: sometimes produces full circles
|
||||
X_AXIS = 0
|
||||
Y_AXIS = 1
|
||||
Z_AXIS = 2
|
||||
|
||||
# Radius vector from center to current location
|
||||
r_P = -offset[0]
|
||||
r_Q = -offset[1]
|
||||
|
||||
# Determine angular travel
|
||||
center_P = currentPos[X_AXIS] - r_P
|
||||
center_Q = currentPos[Y_AXIS] - r_Q
|
||||
rt_X = targetPos[X_AXIS] - center_P
|
||||
rt_Y = targetPos[Y_AXIS] - center_Q
|
||||
angular_travel = math.atan2(r_P * rt_Y - r_Q * rt_X,
|
||||
r_P * rt_X + r_Q * rt_Y)
|
||||
center_P = currentPos[alpha_axis] - r_P
|
||||
center_Q = currentPos[beta_axis] - r_Q
|
||||
rt_Alpha = targetPos[alpha_axis] - center_P
|
||||
rt_Beta = targetPos[beta_axis] - center_Q
|
||||
angular_travel = math.atan2(r_P * rt_Beta - r_Q * rt_Alpha,
|
||||
r_P * rt_Alpha + r_Q * rt_Beta)
|
||||
if angular_travel < 0.:
|
||||
angular_travel += 2. * math.pi
|
||||
if clockwise:
|
||||
angular_travel -= 2. * math.pi
|
||||
|
||||
if (angular_travel == 0.
|
||||
and currentPos[X_AXIS] == targetPos[X_AXIS]
|
||||
and currentPos[Y_AXIS] == targetPos[Y_AXIS]):
|
||||
and currentPos[alpha_axis] == targetPos[alpha_axis]
|
||||
and currentPos[beta_axis] == targetPos[beta_axis]):
|
||||
# Make a circle if the angular rotation is 0 and the
|
||||
# target is current position
|
||||
angular_travel = 2. * math.pi
|
||||
|
||||
# Determine number of segments
|
||||
linear_travel = targetPos[Z_AXIS] - currentPos[Z_AXIS]
|
||||
linear_travel = targetPos[helical_axis] - currentPos[helical_axis]
|
||||
radius = math.hypot(r_P, r_Q)
|
||||
flat_mm = radius * angular_travel
|
||||
if linear_travel:
|
||||
|
@ -118,14 +159,18 @@ class ArcSupport:
|
|||
linear_per_segment = linear_travel / segments
|
||||
coords = []
|
||||
for i in range(1, int(segments)):
|
||||
dist_Z = i * linear_per_segment
|
||||
dist_Helical = i * linear_per_segment
|
||||
cos_Ti = math.cos(i * theta_per_segment)
|
||||
sin_Ti = math.sin(i * theta_per_segment)
|
||||
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti
|
||||
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti
|
||||
|
||||
c = [center_P + r_P, center_Q + r_Q, currentPos[Z_AXIS] + dist_Z]
|
||||
coords.append(c)
|
||||
# Coord doesn't support index assignment, create list
|
||||
c = [None, None, None, None]
|
||||
c[alpha_axis] = center_P + r_P
|
||||
c[beta_axis] = center_Q + r_Q
|
||||
c[helical_axis] = currentPos[helical_axis] + dist_Helical
|
||||
coords.append(Coord(*c))
|
||||
|
||||
coords.append(targetPos)
|
||||
return coords
|
||||
|
|
|
@ -2,10 +2,31 @@
|
|||
DICTIONARY atmega2560.dict
|
||||
CONFIG gcode_arcs.cfg
|
||||
|
||||
# Home and move in arcs
|
||||
# Home and move in XY arc
|
||||
G28
|
||||
G90
|
||||
G1 X20 Y20 Z20
|
||||
G2 X125 Y32 Z20 E1 I10.5 J10.5
|
||||
|
||||
# XY+Z arc move
|
||||
G2 X20 Y20 Z10 E1 I10.5 J10.5
|
||||
|
||||
# Home and move in XZ arc
|
||||
G28
|
||||
G90
|
||||
G1 X20 Y20 Z20
|
||||
G18
|
||||
G2 X125 Y20 Z32 E1 I10.5 K10.5
|
||||
|
||||
# XZ+Y arc move
|
||||
G2 X20 Y10 Z20 E1 I10.5 K10.5
|
||||
|
||||
# Home and move in YZ arc
|
||||
G28
|
||||
G90
|
||||
G1 X20 Y20 Z20
|
||||
G19
|
||||
G2 X20 Y125 Z32 E1 J10.5 K10.5
|
||||
|
||||
# YZ+X arc move
|
||||
G2 X10 Y20 Z20 E1 J10.5 K10.5
|
||||
|
|
Loading…
Reference in New Issue