heater: Move Thermistor and Linear to their own files in extras/

Move the Thermistor code to a new thermistor.py module.  Move the
Linear code to a new adc_temperature.py module.  This simplifies the
heater.py code.

Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
Kevin O'Connor 2018-04-04 14:53:47 -04:00
parent 0fc4f0946e
commit 06d73207e7
4 changed files with 154 additions and 124 deletions

View File

@ -0,0 +1,45 @@
# Obtain temperature using linear interpolation of ADC values
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
SAMPLE_TIME = 0.001
SAMPLE_COUNT = 8
REPORT_TIME = 0.300
# Linear style conversion chips calibrated with two temp measurements
class Linear:
def __init__(self, config, params):
adc_voltage = config.getfloat('adc_voltage', 5., above=0.)
ppins = config.get_printer().lookup_object('pins')
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
self.temperature_callback = None
slope = (params['t2'] - params['t1']) / (params['v2'] - params['v1'])
self.gain = adc_voltage * slope
self.offset = params['t1'] - params['v1'] * slope
def setup_minmax(self, min_temp, max_temp):
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
minval=min(adc_range), maxval=max(adc_range))
def setup_callback(self, temperature_callback):
self.temperature_callback = temperature_callback
def get_report_time_delta(self):
return REPORT_TIME
def adc_callback(self, read_time, read_value):
temp = read_value * self.gain + self.offset
self.temperature_callback(read_time + SAMPLE_COUNT * SAMPLE_TIME, temp)
def calc_adc(self, temp):
return (temp - self.offset) / self.gain
Sensors = {
"AD595": { 't1': 25., 'v1': .25, 't2': 300., 'v2': 3.022 },
}
def load_config(config):
# Register default sensors
pheater = config.get_printer().lookup_object("heater")
for sensor_type, params in Sensors.items():
func = (lambda config, params=params: Linear(config, params))
pheater.add_sensor(sensor_type, func)

View File

@ -59,7 +59,7 @@ class ControlAutoTune:
# Heater control
def set_pwm(self, read_time, value):
if value != self.last_pwm:
self.pwm_samples.append((read_time + heater.PWM_DELAY, value))
self.pwm_samples.append((read_time + self.heater.pwm_delay, value))
self.last_pwm = value
self.heater.set_pwm(read_time, value)
def temperature_callback(self, read_time, temp):

View File

@ -0,0 +1,95 @@
# Temperature measurements with thermistors
#
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math
KELVIN_TO_CELCIUS = -273.15
SAMPLE_TIME = 0.001
SAMPLE_COUNT = 8
REPORT_TIME = 0.300
# Analog voltage to temperature converter for thermistors
class Thermistor:
def __init__(self, config, params):
self.pullup = config.getfloat('pullup_resistor', 4700., above=0.)
ppins = config.get_printer().lookup_object('pins')
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
self.temperature_callback = None
self.c1 = self.c2 = self.c3 = 0.
if 'beta' in params:
self.calc_coefficients_beta(params)
else:
self.calc_coefficients(params)
def calc_coefficients(self, params):
# Calculate Steinhart-Hart coefficents from temp measurements.
# Arrange samples as 3 linear equations and solve for c1, c2, and c3.
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
inv_t2 = 1. / (params['t2'] - KELVIN_TO_CELCIUS)
inv_t3 = 1. / (params['t3'] - KELVIN_TO_CELCIUS)
ln_r1 = math.log(params['r1'])
ln_r2 = math.log(params['r2'])
ln_r3 = math.log(params['r3'])
ln3_r1, ln3_r2, ln3_r3 = ln_r1**3, ln_r2**3, ln_r3**3
inv_t12, inv_t13 = inv_t1 - inv_t2, inv_t1 - inv_t3
ln_r12, ln_r13 = ln_r1 - ln_r2, ln_r1 - ln_r3
ln3_r12, ln3_r13 = ln3_r1 - ln3_r2, ln3_r1 - ln3_r3
self.c3 = ((inv_t12 - inv_t13 * ln_r12 / ln_r13)
/ (ln3_r12 - ln3_r13 * ln_r12 / ln_r13))
self.c2 = (inv_t12 - self.c3 * ln3_r12) / ln_r12
self.c1 = inv_t1 - self.c2 * ln_r1 - self.c3 * ln3_r1
def calc_coefficients_beta(self, params):
# Calculate equivalent Steinhart-Hart coefficents from beta
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
ln_r1 = math.log(params['r1'])
self.c3 = 0.
self.c2 = 1. / params['beta']
self.c1 = inv_t1 - self.c2 * ln_r1
def setup_minmax(self, min_temp, max_temp):
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
minval=min(adc_range), maxval=max(adc_range))
def setup_callback(self, temperature_callback):
self.temperature_callback = temperature_callback
def get_report_time_delta(self):
return REPORT_TIME
def adc_callback(self, read_time, read_value):
# Calculate temperature from adc
adc = max(.00001, min(.99999, read_value))
r = self.pullup * adc / (1.0 - adc)
ln_r = math.log(r)
inv_t = self.c1 + self.c2 * ln_r + self.c3 * ln_r**3
temp = 1.0/inv_t + KELVIN_TO_CELCIUS
self.temperature_callback(read_time + SAMPLE_COUNT * SAMPLE_TIME, temp)
def calc_adc(self, temp):
inv_t = 1. / (temp - KELVIN_TO_CELCIUS)
if self.c3:
# Solve for ln_r using Cardano's formula
y = (self.c1 - inv_t) / (2. * self.c3)
x = math.sqrt((self.c2 / (3. * self.c3))**3 + y**2)
ln_r = math.pow(x - y, 1./3.) - math.pow(x + y, 1./3.)
else:
ln_r = (inv_t - self.c1) / self.c2
r = math.exp(ln_r)
return r / (self.pullup + r)
Sensors = {
"EPCOS 100K B57560G104F": {
't1': 25., 'r1': 100000., 't2': 150., 'r2': 1641.9,
't3': 250., 'r3': 226.15 },
"ATC Semitec 104GT-2": {
't1': 20., 'r1': 126800., 't2': 150., 'r2': 1360.,
't3': 300., 'r3': 80.65 },
"NTC 100K beta 3950": { 't1': 25., 'r1': 100000., 'beta': 3950. },
}
def load_config(config):
# Register default thermistor types
pheater = config.get_printer().lookup_object("heater")
for sensor_type, params in Sensors.items():
func = (lambda config, params=params: Thermistor(config, params))
pheater.add_sensor(sensor_type, func)

View File

@ -3,128 +3,17 @@
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
#
# This file may be distributed under the terms of the GNU GPLv3 license.
import math, logging, threading
######################################################################
# Sensors
######################################################################
KELVIN_TO_CELCIUS = -273.15
SAMPLE_TIME = 0.001
SAMPLE_COUNT = 8
REPORT_TIME = 0.300
# Analog voltage to temperature converter for thermistors
class Thermistor:
def __init__(self, config, params):
self.pullup = config.getfloat('pullup_resistor', 4700., above=0.)
ppins = config.get_printer().lookup_object('pins')
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
self.temperature_callback = None
self.c1 = self.c2 = self.c3 = 0.
if 'beta' in params:
self.calc_coefficients_beta(params)
else:
self.calc_coefficients(params)
def calc_coefficients(self, params):
# Calculate Steinhart-Hart coefficents from temp measurements.
# Arrange samples as 3 linear equations and solve for c1, c2, and c3.
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
inv_t2 = 1. / (params['t2'] - KELVIN_TO_CELCIUS)
inv_t3 = 1. / (params['t3'] - KELVIN_TO_CELCIUS)
ln_r1 = math.log(params['r1'])
ln_r2 = math.log(params['r2'])
ln_r3 = math.log(params['r3'])
ln3_r1, ln3_r2, ln3_r3 = ln_r1**3, ln_r2**3, ln_r3**3
inv_t12, inv_t13 = inv_t1 - inv_t2, inv_t1 - inv_t3
ln_r12, ln_r13 = ln_r1 - ln_r2, ln_r1 - ln_r3
ln3_r12, ln3_r13 = ln3_r1 - ln3_r2, ln3_r1 - ln3_r3
self.c3 = ((inv_t12 - inv_t13 * ln_r12 / ln_r13)
/ (ln3_r12 - ln3_r13 * ln_r12 / ln_r13))
self.c2 = (inv_t12 - self.c3 * ln3_r12) / ln_r12
self.c1 = inv_t1 - self.c2 * ln_r1 - self.c3 * ln3_r1
def calc_coefficients_beta(self, params):
# Calculate equivalent Steinhart-Hart coefficents from beta
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
ln_r1 = math.log(params['r1'])
self.c3 = 0.
self.c2 = 1. / params['beta']
self.c1 = inv_t1 - self.c2 * ln_r1
def setup_minmax(self, min_temp, max_temp):
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
minval=min(adc_range), maxval=max(adc_range))
def setup_callback(self, temperature_callback):
self.temperature_callback = temperature_callback
def adc_callback(self, read_time, read_value):
# Calculate temperature from adc
adc = max(.00001, min(.99999, read_value))
r = self.pullup * adc / (1.0 - adc)
ln_r = math.log(r)
inv_t = self.c1 + self.c2 * ln_r + self.c3 * ln_r**3
temp = 1.0/inv_t + KELVIN_TO_CELCIUS
self.temperature_callback(read_time, temp)
def calc_adc(self, temp):
inv_t = 1. / (temp - KELVIN_TO_CELCIUS)
if self.c3:
# Solve for ln_r using Cardano's formula
y = (self.c1 - inv_t) / (2. * self.c3)
x = math.sqrt((self.c2 / (3. * self.c3))**3 + y**2)
ln_r = math.pow(x - y, 1./3.) - math.pow(x + y, 1./3.)
else:
ln_r = (inv_t - self.c1) / self.c2
r = math.exp(ln_r)
return r / (self.pullup + r)
# Linear style conversion chips calibrated with two temp measurements
class Linear:
def __init__(self, config, params):
adc_voltage = config.getfloat('adc_voltage', 5., above=0.)
ppins = config.get_printer().lookup_object('pins')
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
self.temperature_callback = None
slope = (params['t2'] - params['t1']) / (params['v2'] - params['v1'])
self.gain = adc_voltage * slope
self.offset = params['t1'] - params['v1'] * slope
def setup_minmax(self, min_temp, max_temp):
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
minval=min(adc_range), maxval=max(adc_range))
def setup_callback(self, temperature_callback):
self.temperature_callback = temperature_callback
def adc_callback(self, read_time, read_value):
temp = read_value * self.gain + self.offset
self.temperature_callback(read_time, temp)
def calc_adc(self, temp):
return (temp - self.offset) / self.gain
# Available sensors
Sensors = {
"EPCOS 100K B57560G104F": {
'class': Thermistor, 't1': 25., 'r1': 100000.,
't2': 150., 'r2': 1641.9, 't3': 250., 'r3': 226.15 },
"ATC Semitec 104GT-2": {
'class': Thermistor, 't1': 20., 'r1': 126800.,
't2': 150., 'r2': 1360., 't3': 300., 'r3': 80.65 },
"NTC 100K beta 3950": {
'class': Thermistor, 't1': 25., 'r1': 100000., 'beta': 3950. },
"AD595": { 'class': Linear, 't1': 25., 'v1': .25, 't2': 300., 'v2': 3.022 },
}
import logging, threading
######################################################################
# Heater
######################################################################
KELVIN_TO_CELCIUS = -273.15
MAX_HEAT_TIME = 5.0
AMBIENT_TEMP = 25.
PID_PARAM_BASE = 255.
PWM_DELAY = REPORT_TIME + SAMPLE_TIME*SAMPLE_COUNT
class error(Exception):
pass
@ -139,6 +28,7 @@ class Heater:
self.max_temp = config.getfloat('max_temp', above=self.min_temp)
self.sensor.setup_minmax(self.min_temp, self.max_temp)
self.sensor.setup_callback(self.temperature_callback)
self.pwm_delay = self.sensor.get_report_time_delta()
self.min_extrude_temp = config.getfloat(
'min_extrude_temp', 170., minval=self.min_temp, maxval=self.max_temp)
self.max_power = config.getfloat('max_power', 1., above=0., maxval=1.)
@ -155,7 +45,7 @@ class Heater:
else:
self.mcu_pwm = ppins.setup_pin('pwm', heater_pin)
pwm_cycle_time = config.getfloat(
'pwm_cycle_time', 0.100, above=0., maxval=REPORT_TIME)
'pwm_cycle_time', 0.100, above=0., maxval=self.pwm_delay)
self.mcu_pwm.setup_cycle_time(pwm_cycle_time)
self.mcu_pwm.setup_max_duration(MAX_HEAT_TIME)
is_fileoutput = self.mcu_pwm.get_mcu().is_fileoutput()
@ -174,7 +64,7 @@ class Heater:
and abs(value - self.last_pwm_value) < 0.05):
# No significant change in value - can suppress update
return
pwm_time = read_time + PWM_DELAY
pwm_time = read_time + self.pwm_delay
self.next_pwm_time = pwm_time + 0.75 * MAX_HEAT_TIME
self.last_pwm_value = value
logging.debug("%s: pwm=%.3f@%.3f (from %.3f@%.3f [%.3f])",
@ -307,20 +197,23 @@ class PrinterHeaters:
self.printer = printer
self.sensors = {}
self.heaters = {}
def add_sensor(self, sensor_type, params):
self.sensors[sensor_type] = params
def add_sensor(self, sensor_type, sensor_factory):
self.sensors[sensor_type] = sensor_factory
def setup_heater(self, config):
heater_name = config.get_name()
if heater_name == 'extruder':
heater_name = 'extruder0'
if heater_name in self.heaters:
raise config.error("Heater %s already registered" % (heater_name,))
# Setup sensor
self.printer.try_load_module(config, "thermistor")
self.printer.try_load_module(config, "adc_temperature")
sensor_type = config.get('sensor_type')
if sensor_type not in self.sensors:
raise self.printer.config_error("Unknown temperature sensor '%s'" % (
sensor_type,))
params = self.sensors[sensor_type]
sensor = params['class'](config, params)
sensor = self.sensors[sensor_type](config)
# Create heater
self.heaters[heater_name] = heater = Heater(config, sensor)
return heater
def lookup_heater(self, heater_name):
@ -332,7 +225,4 @@ class PrinterHeaters:
return self.heaters[heater_name]
def add_printer_objects(printer, config):
ph = PrinterHeaters(printer, config)
printer.add_object('heater', ph)
for sensor_type, params in Sensors.items():
ph.add_sensor(sensor_type, params)
printer.add_object('heater', PrinterHeaters(printer, config))