heater: Move Thermistor and Linear to their own files in extras/
Move the Thermistor code to a new thermistor.py module. Move the Linear code to a new adc_temperature.py module. This simplifies the heater.py code. Signed-off-by: Kevin O'Connor <kevin@koconnor.net>
This commit is contained in:
parent
0fc4f0946e
commit
06d73207e7
|
@ -0,0 +1,45 @@
|
|||
# Obtain temperature using linear interpolation of ADC values
|
||||
#
|
||||
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
|
||||
SAMPLE_TIME = 0.001
|
||||
SAMPLE_COUNT = 8
|
||||
REPORT_TIME = 0.300
|
||||
|
||||
# Linear style conversion chips calibrated with two temp measurements
|
||||
class Linear:
|
||||
def __init__(self, config, params):
|
||||
adc_voltage = config.getfloat('adc_voltage', 5., above=0.)
|
||||
ppins = config.get_printer().lookup_object('pins')
|
||||
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
|
||||
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
|
||||
self.temperature_callback = None
|
||||
slope = (params['t2'] - params['t1']) / (params['v2'] - params['v1'])
|
||||
self.gain = adc_voltage * slope
|
||||
self.offset = params['t1'] - params['v1'] * slope
|
||||
def setup_minmax(self, min_temp, max_temp):
|
||||
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
|
||||
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
|
||||
minval=min(adc_range), maxval=max(adc_range))
|
||||
def setup_callback(self, temperature_callback):
|
||||
self.temperature_callback = temperature_callback
|
||||
def get_report_time_delta(self):
|
||||
return REPORT_TIME
|
||||
def adc_callback(self, read_time, read_value):
|
||||
temp = read_value * self.gain + self.offset
|
||||
self.temperature_callback(read_time + SAMPLE_COUNT * SAMPLE_TIME, temp)
|
||||
def calc_adc(self, temp):
|
||||
return (temp - self.offset) / self.gain
|
||||
|
||||
Sensors = {
|
||||
"AD595": { 't1': 25., 'v1': .25, 't2': 300., 'v2': 3.022 },
|
||||
}
|
||||
|
||||
def load_config(config):
|
||||
# Register default sensors
|
||||
pheater = config.get_printer().lookup_object("heater")
|
||||
for sensor_type, params in Sensors.items():
|
||||
func = (lambda config, params=params: Linear(config, params))
|
||||
pheater.add_sensor(sensor_type, func)
|
|
@ -59,7 +59,7 @@ class ControlAutoTune:
|
|||
# Heater control
|
||||
def set_pwm(self, read_time, value):
|
||||
if value != self.last_pwm:
|
||||
self.pwm_samples.append((read_time + heater.PWM_DELAY, value))
|
||||
self.pwm_samples.append((read_time + self.heater.pwm_delay, value))
|
||||
self.last_pwm = value
|
||||
self.heater.set_pwm(read_time, value)
|
||||
def temperature_callback(self, read_time, temp):
|
||||
|
|
|
@ -0,0 +1,95 @@
|
|||
# Temperature measurements with thermistors
|
||||
#
|
||||
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import math
|
||||
|
||||
KELVIN_TO_CELCIUS = -273.15
|
||||
SAMPLE_TIME = 0.001
|
||||
SAMPLE_COUNT = 8
|
||||
REPORT_TIME = 0.300
|
||||
|
||||
# Analog voltage to temperature converter for thermistors
|
||||
class Thermistor:
|
||||
def __init__(self, config, params):
|
||||
self.pullup = config.getfloat('pullup_resistor', 4700., above=0.)
|
||||
ppins = config.get_printer().lookup_object('pins')
|
||||
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
|
||||
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
|
||||
self.temperature_callback = None
|
||||
self.c1 = self.c2 = self.c3 = 0.
|
||||
if 'beta' in params:
|
||||
self.calc_coefficients_beta(params)
|
||||
else:
|
||||
self.calc_coefficients(params)
|
||||
def calc_coefficients(self, params):
|
||||
# Calculate Steinhart-Hart coefficents from temp measurements.
|
||||
# Arrange samples as 3 linear equations and solve for c1, c2, and c3.
|
||||
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
|
||||
inv_t2 = 1. / (params['t2'] - KELVIN_TO_CELCIUS)
|
||||
inv_t3 = 1. / (params['t3'] - KELVIN_TO_CELCIUS)
|
||||
ln_r1 = math.log(params['r1'])
|
||||
ln_r2 = math.log(params['r2'])
|
||||
ln_r3 = math.log(params['r3'])
|
||||
ln3_r1, ln3_r2, ln3_r3 = ln_r1**3, ln_r2**3, ln_r3**3
|
||||
|
||||
inv_t12, inv_t13 = inv_t1 - inv_t2, inv_t1 - inv_t3
|
||||
ln_r12, ln_r13 = ln_r1 - ln_r2, ln_r1 - ln_r3
|
||||
ln3_r12, ln3_r13 = ln3_r1 - ln3_r2, ln3_r1 - ln3_r3
|
||||
|
||||
self.c3 = ((inv_t12 - inv_t13 * ln_r12 / ln_r13)
|
||||
/ (ln3_r12 - ln3_r13 * ln_r12 / ln_r13))
|
||||
self.c2 = (inv_t12 - self.c3 * ln3_r12) / ln_r12
|
||||
self.c1 = inv_t1 - self.c2 * ln_r1 - self.c3 * ln3_r1
|
||||
def calc_coefficients_beta(self, params):
|
||||
# Calculate equivalent Steinhart-Hart coefficents from beta
|
||||
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
|
||||
ln_r1 = math.log(params['r1'])
|
||||
self.c3 = 0.
|
||||
self.c2 = 1. / params['beta']
|
||||
self.c1 = inv_t1 - self.c2 * ln_r1
|
||||
def setup_minmax(self, min_temp, max_temp):
|
||||
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
|
||||
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
|
||||
minval=min(adc_range), maxval=max(adc_range))
|
||||
def setup_callback(self, temperature_callback):
|
||||
self.temperature_callback = temperature_callback
|
||||
def get_report_time_delta(self):
|
||||
return REPORT_TIME
|
||||
def adc_callback(self, read_time, read_value):
|
||||
# Calculate temperature from adc
|
||||
adc = max(.00001, min(.99999, read_value))
|
||||
r = self.pullup * adc / (1.0 - adc)
|
||||
ln_r = math.log(r)
|
||||
inv_t = self.c1 + self.c2 * ln_r + self.c3 * ln_r**3
|
||||
temp = 1.0/inv_t + KELVIN_TO_CELCIUS
|
||||
self.temperature_callback(read_time + SAMPLE_COUNT * SAMPLE_TIME, temp)
|
||||
def calc_adc(self, temp):
|
||||
inv_t = 1. / (temp - KELVIN_TO_CELCIUS)
|
||||
if self.c3:
|
||||
# Solve for ln_r using Cardano's formula
|
||||
y = (self.c1 - inv_t) / (2. * self.c3)
|
||||
x = math.sqrt((self.c2 / (3. * self.c3))**3 + y**2)
|
||||
ln_r = math.pow(x - y, 1./3.) - math.pow(x + y, 1./3.)
|
||||
else:
|
||||
ln_r = (inv_t - self.c1) / self.c2
|
||||
r = math.exp(ln_r)
|
||||
return r / (self.pullup + r)
|
||||
|
||||
Sensors = {
|
||||
"EPCOS 100K B57560G104F": {
|
||||
't1': 25., 'r1': 100000., 't2': 150., 'r2': 1641.9,
|
||||
't3': 250., 'r3': 226.15 },
|
||||
"ATC Semitec 104GT-2": {
|
||||
't1': 20., 'r1': 126800., 't2': 150., 'r2': 1360.,
|
||||
't3': 300., 'r3': 80.65 },
|
||||
"NTC 100K beta 3950": { 't1': 25., 'r1': 100000., 'beta': 3950. },
|
||||
}
|
||||
|
||||
def load_config(config):
|
||||
# Register default thermistor types
|
||||
pheater = config.get_printer().lookup_object("heater")
|
||||
for sensor_type, params in Sensors.items():
|
||||
func = (lambda config, params=params: Thermistor(config, params))
|
||||
pheater.add_sensor(sensor_type, func)
|
136
klippy/heater.py
136
klippy/heater.py
|
@ -3,128 +3,17 @@
|
|||
# Copyright (C) 2016-2018 Kevin O'Connor <kevin@koconnor.net>
|
||||
#
|
||||
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||||
import math, logging, threading
|
||||
|
||||
|
||||
######################################################################
|
||||
# Sensors
|
||||
######################################################################
|
||||
|
||||
KELVIN_TO_CELCIUS = -273.15
|
||||
SAMPLE_TIME = 0.001
|
||||
SAMPLE_COUNT = 8
|
||||
REPORT_TIME = 0.300
|
||||
|
||||
# Analog voltage to temperature converter for thermistors
|
||||
class Thermistor:
|
||||
def __init__(self, config, params):
|
||||
self.pullup = config.getfloat('pullup_resistor', 4700., above=0.)
|
||||
ppins = config.get_printer().lookup_object('pins')
|
||||
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
|
||||
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
|
||||
self.temperature_callback = None
|
||||
self.c1 = self.c2 = self.c3 = 0.
|
||||
if 'beta' in params:
|
||||
self.calc_coefficients_beta(params)
|
||||
else:
|
||||
self.calc_coefficients(params)
|
||||
def calc_coefficients(self, params):
|
||||
# Calculate Steinhart-Hart coefficents from temp measurements.
|
||||
# Arrange samples as 3 linear equations and solve for c1, c2, and c3.
|
||||
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
|
||||
inv_t2 = 1. / (params['t2'] - KELVIN_TO_CELCIUS)
|
||||
inv_t3 = 1. / (params['t3'] - KELVIN_TO_CELCIUS)
|
||||
ln_r1 = math.log(params['r1'])
|
||||
ln_r2 = math.log(params['r2'])
|
||||
ln_r3 = math.log(params['r3'])
|
||||
ln3_r1, ln3_r2, ln3_r3 = ln_r1**3, ln_r2**3, ln_r3**3
|
||||
|
||||
inv_t12, inv_t13 = inv_t1 - inv_t2, inv_t1 - inv_t3
|
||||
ln_r12, ln_r13 = ln_r1 - ln_r2, ln_r1 - ln_r3
|
||||
ln3_r12, ln3_r13 = ln3_r1 - ln3_r2, ln3_r1 - ln3_r3
|
||||
|
||||
self.c3 = ((inv_t12 - inv_t13 * ln_r12 / ln_r13)
|
||||
/ (ln3_r12 - ln3_r13 * ln_r12 / ln_r13))
|
||||
self.c2 = (inv_t12 - self.c3 * ln3_r12) / ln_r12
|
||||
self.c1 = inv_t1 - self.c2 * ln_r1 - self.c3 * ln3_r1
|
||||
def calc_coefficients_beta(self, params):
|
||||
# Calculate equivalent Steinhart-Hart coefficents from beta
|
||||
inv_t1 = 1. / (params['t1'] - KELVIN_TO_CELCIUS)
|
||||
ln_r1 = math.log(params['r1'])
|
||||
self.c3 = 0.
|
||||
self.c2 = 1. / params['beta']
|
||||
self.c1 = inv_t1 - self.c2 * ln_r1
|
||||
def setup_minmax(self, min_temp, max_temp):
|
||||
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
|
||||
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
|
||||
minval=min(adc_range), maxval=max(adc_range))
|
||||
def setup_callback(self, temperature_callback):
|
||||
self.temperature_callback = temperature_callback
|
||||
def adc_callback(self, read_time, read_value):
|
||||
# Calculate temperature from adc
|
||||
adc = max(.00001, min(.99999, read_value))
|
||||
r = self.pullup * adc / (1.0 - adc)
|
||||
ln_r = math.log(r)
|
||||
inv_t = self.c1 + self.c2 * ln_r + self.c3 * ln_r**3
|
||||
temp = 1.0/inv_t + KELVIN_TO_CELCIUS
|
||||
self.temperature_callback(read_time, temp)
|
||||
def calc_adc(self, temp):
|
||||
inv_t = 1. / (temp - KELVIN_TO_CELCIUS)
|
||||
if self.c3:
|
||||
# Solve for ln_r using Cardano's formula
|
||||
y = (self.c1 - inv_t) / (2. * self.c3)
|
||||
x = math.sqrt((self.c2 / (3. * self.c3))**3 + y**2)
|
||||
ln_r = math.pow(x - y, 1./3.) - math.pow(x + y, 1./3.)
|
||||
else:
|
||||
ln_r = (inv_t - self.c1) / self.c2
|
||||
r = math.exp(ln_r)
|
||||
return r / (self.pullup + r)
|
||||
|
||||
# Linear style conversion chips calibrated with two temp measurements
|
||||
class Linear:
|
||||
def __init__(self, config, params):
|
||||
adc_voltage = config.getfloat('adc_voltage', 5., above=0.)
|
||||
ppins = config.get_printer().lookup_object('pins')
|
||||
self.mcu_adc = ppins.setup_pin('adc', config.get('sensor_pin'))
|
||||
self.mcu_adc.setup_adc_callback(REPORT_TIME, self.adc_callback)
|
||||
self.temperature_callback = None
|
||||
slope = (params['t2'] - params['t1']) / (params['v2'] - params['v1'])
|
||||
self.gain = adc_voltage * slope
|
||||
self.offset = params['t1'] - params['v1'] * slope
|
||||
def setup_minmax(self, min_temp, max_temp):
|
||||
adc_range = [self.calc_adc(min_temp), self.calc_adc(max_temp)]
|
||||
self.mcu_adc.setup_minmax(SAMPLE_TIME, SAMPLE_COUNT,
|
||||
minval=min(adc_range), maxval=max(adc_range))
|
||||
def setup_callback(self, temperature_callback):
|
||||
self.temperature_callback = temperature_callback
|
||||
def adc_callback(self, read_time, read_value):
|
||||
temp = read_value * self.gain + self.offset
|
||||
self.temperature_callback(read_time, temp)
|
||||
def calc_adc(self, temp):
|
||||
return (temp - self.offset) / self.gain
|
||||
|
||||
# Available sensors
|
||||
Sensors = {
|
||||
"EPCOS 100K B57560G104F": {
|
||||
'class': Thermistor, 't1': 25., 'r1': 100000.,
|
||||
't2': 150., 'r2': 1641.9, 't3': 250., 'r3': 226.15 },
|
||||
"ATC Semitec 104GT-2": {
|
||||
'class': Thermistor, 't1': 20., 'r1': 126800.,
|
||||
't2': 150., 'r2': 1360., 't3': 300., 'r3': 80.65 },
|
||||
"NTC 100K beta 3950": {
|
||||
'class': Thermistor, 't1': 25., 'r1': 100000., 'beta': 3950. },
|
||||
"AD595": { 'class': Linear, 't1': 25., 'v1': .25, 't2': 300., 'v2': 3.022 },
|
||||
}
|
||||
import logging, threading
|
||||
|
||||
|
||||
######################################################################
|
||||
# Heater
|
||||
######################################################################
|
||||
|
||||
KELVIN_TO_CELCIUS = -273.15
|
||||
MAX_HEAT_TIME = 5.0
|
||||
AMBIENT_TEMP = 25.
|
||||
PID_PARAM_BASE = 255.
|
||||
PWM_DELAY = REPORT_TIME + SAMPLE_TIME*SAMPLE_COUNT
|
||||
|
||||
class error(Exception):
|
||||
pass
|
||||
|
@ -139,6 +28,7 @@ class Heater:
|
|||
self.max_temp = config.getfloat('max_temp', above=self.min_temp)
|
||||
self.sensor.setup_minmax(self.min_temp, self.max_temp)
|
||||
self.sensor.setup_callback(self.temperature_callback)
|
||||
self.pwm_delay = self.sensor.get_report_time_delta()
|
||||
self.min_extrude_temp = config.getfloat(
|
||||
'min_extrude_temp', 170., minval=self.min_temp, maxval=self.max_temp)
|
||||
self.max_power = config.getfloat('max_power', 1., above=0., maxval=1.)
|
||||
|
@ -155,7 +45,7 @@ class Heater:
|
|||
else:
|
||||
self.mcu_pwm = ppins.setup_pin('pwm', heater_pin)
|
||||
pwm_cycle_time = config.getfloat(
|
||||
'pwm_cycle_time', 0.100, above=0., maxval=REPORT_TIME)
|
||||
'pwm_cycle_time', 0.100, above=0., maxval=self.pwm_delay)
|
||||
self.mcu_pwm.setup_cycle_time(pwm_cycle_time)
|
||||
self.mcu_pwm.setup_max_duration(MAX_HEAT_TIME)
|
||||
is_fileoutput = self.mcu_pwm.get_mcu().is_fileoutput()
|
||||
|
@ -174,7 +64,7 @@ class Heater:
|
|||
and abs(value - self.last_pwm_value) < 0.05):
|
||||
# No significant change in value - can suppress update
|
||||
return
|
||||
pwm_time = read_time + PWM_DELAY
|
||||
pwm_time = read_time + self.pwm_delay
|
||||
self.next_pwm_time = pwm_time + 0.75 * MAX_HEAT_TIME
|
||||
self.last_pwm_value = value
|
||||
logging.debug("%s: pwm=%.3f@%.3f (from %.3f@%.3f [%.3f])",
|
||||
|
@ -307,20 +197,23 @@ class PrinterHeaters:
|
|||
self.printer = printer
|
||||
self.sensors = {}
|
||||
self.heaters = {}
|
||||
def add_sensor(self, sensor_type, params):
|
||||
self.sensors[sensor_type] = params
|
||||
def add_sensor(self, sensor_type, sensor_factory):
|
||||
self.sensors[sensor_type] = sensor_factory
|
||||
def setup_heater(self, config):
|
||||
heater_name = config.get_name()
|
||||
if heater_name == 'extruder':
|
||||
heater_name = 'extruder0'
|
||||
if heater_name in self.heaters:
|
||||
raise config.error("Heater %s already registered" % (heater_name,))
|
||||
# Setup sensor
|
||||
self.printer.try_load_module(config, "thermistor")
|
||||
self.printer.try_load_module(config, "adc_temperature")
|
||||
sensor_type = config.get('sensor_type')
|
||||
if sensor_type not in self.sensors:
|
||||
raise self.printer.config_error("Unknown temperature sensor '%s'" % (
|
||||
sensor_type,))
|
||||
params = self.sensors[sensor_type]
|
||||
sensor = params['class'](config, params)
|
||||
sensor = self.sensors[sensor_type](config)
|
||||
# Create heater
|
||||
self.heaters[heater_name] = heater = Heater(config, sensor)
|
||||
return heater
|
||||
def lookup_heater(self, heater_name):
|
||||
|
@ -332,7 +225,4 @@ class PrinterHeaters:
|
|||
return self.heaters[heater_name]
|
||||
|
||||
def add_printer_objects(printer, config):
|
||||
ph = PrinterHeaters(printer, config)
|
||||
printer.add_object('heater', ph)
|
||||
for sensor_type, params in Sensors.items():
|
||||
ph.add_sensor(sensor_type, params)
|
||||
printer.add_object('heater', PrinterHeaters(printer, config))
|
||||
|
|
Loading…
Reference in New Issue