klipper/src/sched.c

343 lines
8.7 KiB
C
Raw Normal View History

// Basic scheduling functions and startup/shutdown code.
//
// Copyright (C) 2016,2017 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include <setjmp.h> // setjmp
#include "autoconf.h" // CONFIG_*
#include "basecmd.h" // stats_update
#include "board/io.h" // readb
#include "board/irq.h" // irq_save
#include "board/misc.h" // timer_from_us
#include "board/pgm.h" // READP
#include "command.h" // shutdown
#include "sched.h" // sched_check_periodic
#include "stepper.h" // stepper_event
/****************************************************************
* Timers
****************************************************************/
static struct timer periodic_timer, *timer_list = &periodic_timer;
static struct timer sentinel_timer, deleted_timer;
// The periodic_timer simplifies the timer code by ensuring there is
// always a timer on the timer list and that there is always a timer
// not far in the future.
static uint_fast8_t
periodic_event(struct timer *t)
{
// Make sure the stats task runs periodically
sched_wake_tasks();
// Reschedule timer
periodic_timer.waketime += timer_from_us(100000);
sentinel_timer.waketime = periodic_timer.waketime + 0x80000000;
return SF_RESCHEDULE;
}
static struct timer periodic_timer = {
.func = periodic_event,
.next = &sentinel_timer,
};
// The sentinel timer is always the last timer on timer_list - its
// presence allows the code to avoid checking for NULL while
// traversing timer_list. Since sentinel_timer.waketime is always
// equal to (periodic_timer.waketime + 0x80000000) any added timer
// must always have a waketime less than one of these two timers.
static uint_fast8_t
sentinel_event(struct timer *t)
{
shutdown("sentinel timer called");
}
static struct timer sentinel_timer = {
.func = sentinel_event,
.waketime = 0x80000000,
};
// Find position for a timer in timer_list and insert it
static void __always_inline
insert_timer(struct timer *t, uint32_t waketime)
{
struct timer *prev, *pos = timer_list;
for (;;) {
prev = pos;
if (CONFIG_MACH_AVR)
// micro optimization for AVR - reduces register pressure
asm("" : "+r"(prev));
pos = pos->next;
if (timer_is_before(waketime, pos->waketime))
break;
}
t->next = pos;
prev->next = t;
}
// Schedule a function call at a supplied time.
void
sched_add_timer(struct timer *add)
{
uint32_t waketime = add->waketime;
irqstatus_t flag = irq_save();
if (unlikely(timer_is_before(waketime, timer_list->waketime))) {
// This timer is before all other scheduled timers
struct timer *tl = timer_list;
if (timer_is_before(waketime, timer_read_time() + timer_from_us(2000)))
try_shutdown("Timer too close");
if (tl == &deleted_timer)
add->next = deleted_timer.next;
else
add->next = tl;
deleted_timer.waketime = waketime;
deleted_timer.next = add;
timer_list = &deleted_timer;
timer_kick();
} else {
insert_timer(add, waketime);
}
irq_restore(flag);
}
// The deleted timer is used when deleting an active timer.
static uint_fast8_t
deleted_event(struct timer *t)
{
return SF_DONE;
}
static struct timer deleted_timer = {
.func = deleted_event,
};
// Remove a timer that may be live.
void
sched_del_timer(struct timer *del)
{
irqstatus_t flag = irq_save();
if (timer_list == del) {
// Deleting the next active timer - replace with deleted_timer
deleted_timer.waketime = del->waketime;
deleted_timer.next = del->next;
timer_list = &deleted_timer;
} else {
// Find and remove from timer list (if present)
struct timer *pos;
for (pos = timer_list; pos->next; pos = pos->next) {
if (pos->next == del) {
pos->next = del->next;
break;
}
}
}
irq_restore(flag);
}
// Invoke the next timer - called from board hardware irq code.
unsigned int
sched_timer_dispatch(void)
{
// Invoke timer callback
struct timer *t = timer_list;
uint_fast8_t res;
uint32_t updated_waketime;
if (CONFIG_INLINE_STEPPER_HACK && likely(!t->func)) {
res = stepper_event(t);
updated_waketime = t->waketime;
} else {
res = t->func(t);
updated_waketime = t->waketime;
}
// Update timer_list (rescheduling current timer if necessary)
unsigned int next_waketime = updated_waketime;
if (unlikely(res == SF_DONE)) {
next_waketime = t->next->waketime;
timer_list = t->next;
} else if (!timer_is_before(updated_waketime, t->next->waketime)) {
next_waketime = t->next->waketime;
timer_list = t->next;
insert_timer(t, updated_waketime);
}
return next_waketime;
}
// Remove all user timers
void
sched_timer_reset(void)
{
timer_list = &deleted_timer;
deleted_timer.waketime = periodic_timer.waketime;
deleted_timer.next = &periodic_timer;
periodic_timer.next = &sentinel_timer;
timer_kick();
}
/****************************************************************
* Tasks
****************************************************************/
static int_fast8_t tasks_status;
#define TS_IDLE -1
#define TS_REQUESTED 0
#define TS_RUNNING 1
// Note that at least one task is ready to run
void
sched_wake_tasks(void)
{
tasks_status = TS_REQUESTED;
}
// Check if tasks need to be run
uint8_t
sched_tasks_busy(void)
{
return tasks_status >= TS_REQUESTED;
}
// Note that a task is ready to run
void
sched_wake_task(struct task_wake *w)
{
sched_wake_tasks();
writeb(&w->wake, 1);
}
// Check if a task is ready to run (as indicated by sched_wake_task)
uint8_t
sched_check_wake(struct task_wake *w)
{
if (!readb(&w->wake))
return 0;
writeb(&w->wake, 0);
return 1;
}
// Main task dispatch loop
static void
run_tasks(void)
{
uint32_t start = timer_read_time();
for (;;) {
// Check if can sleep
if (tasks_status != TS_REQUESTED) {
start -= timer_read_time();
irq_disable();
if (tasks_status != TS_REQUESTED) {
// Sleep processor (only run timers) until tasks woken
tasks_status = TS_IDLE;
do {
irq_wait();
} while (tasks_status != TS_REQUESTED);
}
irq_enable();
start += timer_read_time();
}
tasks_status = TS_RUNNING;
// Run all tasks
extern void ctr_run_taskfuncs(void);
ctr_run_taskfuncs();
// Update statistics
uint32_t cur = timer_read_time();
stats_update(start, cur);
start = cur;
}
}
/****************************************************************
* Shutdown processing
****************************************************************/
static uint_fast8_t shutdown_status, shutdown_reason;
// Return true if the machine is in an emergency stop state
uint8_t
sched_is_shutdown(void)
{
return !!shutdown_status;
}
// Transition out of shutdown state
void
sched_clear_shutdown(void)
{
if (!shutdown_status)
shutdown("Shutdown cleared when not shutdown");
if (shutdown_status == 2)
// Ignore attempt to clear shutdown if still processing shutdown
return;
shutdown_status = 0;
}
// Invoke all shutdown functions (as declared by DECL_SHUTDOWN)
static void
run_shutdown(int reason)
{
uint32_t cur = timer_read_time();
if (!shutdown_status)
shutdown_reason = reason;
shutdown_status = 2;
sched_timer_reset();
extern void ctr_run_shutdownfuncs(void);
ctr_run_shutdownfuncs();
shutdown_status = 1;
irq_enable();
sendf("shutdown clock=%u static_string_id=%hu", cur, shutdown_reason);
}
// Report the last shutdown reason code
void
sched_report_shutdown(void)
{
sendf("is_shutdown static_string_id=%hu", shutdown_reason);
}
// Shutdown the machine if not already in the process of shutting down
void
sched_try_shutdown(uint_fast8_t reason)
{
if (!shutdown_status)
sched_shutdown(reason);
}
static jmp_buf shutdown_jmp;
// Force the machine to immediately run the shutdown handlers
void
sched_shutdown(uint_fast8_t reason)
{
irq_disable();
longjmp(shutdown_jmp, reason);
}
/****************************************************************
* Startup
****************************************************************/
// Main loop of program
void
sched_main(void)
{
extern void ctr_run_initfuncs(void);
ctr_run_initfuncs();
sendf("starting");
int ret = setjmp(shutdown_jmp);
if (ret)
run_shutdown(ret);
run_tasks();
}