2021-08-02 19:36:38 +03:00
|
|
|
#!/usr/bin/env python
|
2016-10-31 18:03:52 +03:00
|
|
|
# Script to parse a logging file, extract the stats, and graph them
|
|
|
|
#
|
2021-08-02 19:36:38 +03:00
|
|
|
# Copyright (C) 2016-2021 Kevin O'Connor <kevin@koconnor.net>
|
2016-10-31 18:03:52 +03:00
|
|
|
#
|
|
|
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
|
|
|
import optparse, datetime
|
2017-12-31 02:20:53 +03:00
|
|
|
import matplotlib
|
2016-10-31 18:03:52 +03:00
|
|
|
|
|
|
|
MAXBANDWIDTH=25000.
|
2017-02-11 22:43:36 +03:00
|
|
|
MAXBUFFER=2.
|
2017-07-19 21:13:35 +03:00
|
|
|
STATS_INTERVAL=5.
|
2017-08-10 01:52:13 +03:00
|
|
|
TASK_MAX=0.0025
|
2016-10-31 18:03:52 +03:00
|
|
|
|
2019-01-14 06:00:08 +03:00
|
|
|
APPLY_PREFIX = [
|
|
|
|
'mcu_awake', 'mcu_task_avg', 'mcu_task_stddev', 'bytes_write',
|
|
|
|
'bytes_read', 'bytes_retransmit', 'freq', 'adj',
|
|
|
|
'target', 'temp', 'pwm'
|
|
|
|
]
|
2018-02-04 02:43:52 +03:00
|
|
|
|
2018-02-20 07:12:14 +03:00
|
|
|
def parse_log(logname, mcu):
|
|
|
|
if mcu is None:
|
|
|
|
mcu = "mcu"
|
|
|
|
mcu_prefix = mcu + ":"
|
2018-02-04 02:43:52 +03:00
|
|
|
apply_prefix = { p: 1 for p in APPLY_PREFIX }
|
2021-08-02 19:36:38 +03:00
|
|
|
f = open(logname, 'r')
|
2016-10-31 18:03:52 +03:00
|
|
|
out = []
|
|
|
|
for line in f:
|
|
|
|
parts = line.split()
|
2016-12-06 19:10:52 +03:00
|
|
|
if not parts or parts[0] not in ('Stats', 'INFO:root:Stats'):
|
2016-10-31 18:03:52 +03:00
|
|
|
#if parts and parts[0] == 'INFO:root:shutdown:':
|
|
|
|
# break
|
|
|
|
continue
|
2017-12-29 23:27:51 +03:00
|
|
|
prefix = ""
|
|
|
|
keyparts = {}
|
|
|
|
for p in parts[2:]:
|
2018-05-24 01:19:50 +03:00
|
|
|
if '=' not in p:
|
2017-12-29 23:27:51 +03:00
|
|
|
prefix = p
|
2018-02-20 07:12:14 +03:00
|
|
|
if prefix == mcu_prefix:
|
2017-12-29 23:27:51 +03:00
|
|
|
prefix = ''
|
|
|
|
continue
|
|
|
|
name, val = p.split('=', 1)
|
2018-02-04 02:43:52 +03:00
|
|
|
if name in apply_prefix:
|
|
|
|
name = prefix + name
|
|
|
|
keyparts[name] = val
|
2018-11-27 01:37:04 +03:00
|
|
|
if 'print_time' not in keyparts:
|
2016-12-06 19:10:52 +03:00
|
|
|
continue
|
2016-10-31 18:03:52 +03:00
|
|
|
keyparts['#sampletime'] = float(parts[1][:-1])
|
|
|
|
out.append(keyparts)
|
|
|
|
f.close()
|
|
|
|
return out
|
|
|
|
|
2019-06-19 21:12:56 +03:00
|
|
|
def setup_matplotlib(output_to_file):
|
2019-11-10 18:18:31 +03:00
|
|
|
global matplotlib
|
2019-06-19 21:12:56 +03:00
|
|
|
if output_to_file:
|
|
|
|
matplotlib.use('Agg')
|
|
|
|
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
|
|
|
|
import matplotlib.ticker
|
|
|
|
|
2017-02-01 19:21:01 +03:00
|
|
|
def find_print_restarts(data):
|
2018-01-14 18:13:09 +03:00
|
|
|
runoff_samples = {}
|
|
|
|
last_runoff_start = last_buffer_time = last_sampletime = 0.
|
|
|
|
last_print_stall = 0
|
|
|
|
for d in reversed(data):
|
|
|
|
# Check for buffer runoff
|
|
|
|
sampletime = d['#sampletime']
|
2017-10-30 03:30:36 +03:00
|
|
|
buffer_time = float(d.get('buffer_time', 0.))
|
2018-01-28 18:23:44 +03:00
|
|
|
if (last_runoff_start and last_sampletime - sampletime < 5
|
|
|
|
and buffer_time > last_buffer_time):
|
2018-01-14 18:13:09 +03:00
|
|
|
runoff_samples[last_runoff_start][1].append(sampletime)
|
2018-01-28 18:23:44 +03:00
|
|
|
elif buffer_time < 1.:
|
|
|
|
last_runoff_start = sampletime
|
|
|
|
runoff_samples[last_runoff_start] = [False, [sampletime]]
|
2018-01-14 18:13:09 +03:00
|
|
|
else:
|
|
|
|
last_runoff_start = 0.
|
|
|
|
last_buffer_time = buffer_time
|
|
|
|
last_sampletime = sampletime
|
|
|
|
# Check for print stall
|
|
|
|
print_stall = int(d['print_stall'])
|
|
|
|
if print_stall < last_print_stall:
|
|
|
|
if last_runoff_start:
|
|
|
|
runoff_samples[last_runoff_start][0] = True
|
|
|
|
last_print_stall = print_stall
|
|
|
|
sample_resets = {sampletime: 1 for stall, samples in runoff_samples.values()
|
|
|
|
for sampletime in samples if not stall}
|
2017-02-01 19:21:01 +03:00
|
|
|
return sample_resets
|
|
|
|
|
2019-06-19 21:12:56 +03:00
|
|
|
def plot_mcu(data, maxbw):
|
2016-10-31 18:03:52 +03:00
|
|
|
# Generate data for plot
|
|
|
|
basetime = lasttime = data[0]['#sampletime']
|
|
|
|
lastbw = float(data[0]['bytes_write']) + float(data[0]['bytes_retransmit'])
|
2017-02-01 19:21:01 +03:00
|
|
|
sample_resets = find_print_restarts(data)
|
2016-10-31 18:03:52 +03:00
|
|
|
times = []
|
|
|
|
bwdeltas = []
|
|
|
|
loads = []
|
2017-07-19 21:13:35 +03:00
|
|
|
awake = []
|
2016-10-31 18:03:52 +03:00
|
|
|
hostbuffers = []
|
|
|
|
for d in data:
|
|
|
|
st = d['#sampletime']
|
|
|
|
timedelta = st - lasttime
|
|
|
|
if timedelta <= 0.:
|
|
|
|
continue
|
|
|
|
bw = float(d['bytes_write']) + float(d['bytes_retransmit'])
|
2016-12-06 19:10:52 +03:00
|
|
|
if bw < lastbw:
|
|
|
|
lastbw = bw
|
|
|
|
continue
|
2016-10-31 18:03:52 +03:00
|
|
|
load = float(d['mcu_task_avg']) + 3*float(d['mcu_task_stddev'])
|
|
|
|
if st - basetime < 15.:
|
|
|
|
load = 0.
|
|
|
|
pt = float(d['print_time'])
|
|
|
|
hb = float(d['buffer_time'])
|
2018-01-14 18:13:09 +03:00
|
|
|
if hb >= MAXBUFFER or st in sample_resets:
|
2016-10-31 18:03:52 +03:00
|
|
|
hb = 0.
|
|
|
|
else:
|
|
|
|
hb = 100. * (MAXBUFFER - hb) / MAXBUFFER
|
|
|
|
hostbuffers.append(hb)
|
|
|
|
times.append(datetime.datetime.utcfromtimestamp(st))
|
|
|
|
bwdeltas.append(100. * (bw - lastbw) / (maxbw * timedelta))
|
2017-08-10 01:52:13 +03:00
|
|
|
loads.append(100. * load / TASK_MAX)
|
2017-07-21 21:19:59 +03:00
|
|
|
awake.append(100. * float(d.get('mcu_awake', 0.)) / STATS_INTERVAL)
|
2016-10-31 18:03:52 +03:00
|
|
|
lasttime = st
|
|
|
|
lastbw = bw
|
|
|
|
|
|
|
|
# Build plot
|
2017-12-31 02:20:53 +03:00
|
|
|
fig, ax1 = matplotlib.pyplot.subplots()
|
2016-10-31 18:03:52 +03:00
|
|
|
ax1.set_title("MCU bandwidth and load utilization")
|
2017-04-11 20:40:25 +03:00
|
|
|
ax1.set_xlabel('Time')
|
2016-10-31 18:03:52 +03:00
|
|
|
ax1.set_ylabel('Usage (%)')
|
2018-01-14 18:46:48 +03:00
|
|
|
ax1.plot_date(times, bwdeltas, 'g', label='Bandwidth', alpha=0.8)
|
|
|
|
ax1.plot_date(times, loads, 'r', label='MCU load', alpha=0.8)
|
|
|
|
ax1.plot_date(times, hostbuffers, 'c', label='Host buffer', alpha=0.8)
|
|
|
|
ax1.plot_date(times, awake, 'y', label='Awake time', alpha=0.6)
|
2017-12-31 02:24:46 +03:00
|
|
|
fontP = matplotlib.font_manager.FontProperties()
|
|
|
|
fontP.set_size('x-small')
|
|
|
|
ax1.legend(loc='best', prop=fontP)
|
2017-12-31 02:20:53 +03:00
|
|
|
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
|
2016-10-31 18:03:52 +03:00
|
|
|
ax1.grid(True)
|
2019-06-19 21:12:56 +03:00
|
|
|
return fig
|
2016-10-31 18:03:52 +03:00
|
|
|
|
2020-09-17 04:29:58 +03:00
|
|
|
def plot_system(data):
|
|
|
|
# Generate data for plot
|
|
|
|
lasttime = data[0]['#sampletime']
|
|
|
|
lastcputime = float(data[0]['cputime'])
|
|
|
|
times = []
|
|
|
|
sysloads = []
|
|
|
|
cputimes = []
|
|
|
|
memavails = []
|
|
|
|
for d in data:
|
|
|
|
st = d['#sampletime']
|
|
|
|
timedelta = st - lasttime
|
|
|
|
if timedelta <= 0.:
|
|
|
|
continue
|
|
|
|
lasttime = st
|
|
|
|
times.append(datetime.datetime.utcfromtimestamp(st))
|
|
|
|
cputime = float(d['cputime'])
|
|
|
|
cpudelta = max(0., min(1.5, (cputime - lastcputime) / timedelta))
|
|
|
|
lastcputime = cputime
|
|
|
|
cputimes.append(cpudelta * 100.)
|
|
|
|
sysloads.append(float(d['sysload']) * 100.)
|
|
|
|
memavails.append(float(d['memavail']))
|
|
|
|
|
|
|
|
# Build plot
|
|
|
|
fig, ax1 = matplotlib.pyplot.subplots()
|
2022-05-06 22:01:27 +03:00
|
|
|
ax1.set_title("System load utilization")
|
2020-09-17 04:29:58 +03:00
|
|
|
ax1.set_xlabel('Time')
|
|
|
|
ax1.set_ylabel('Load (% of a core)')
|
|
|
|
ax1.plot_date(times, sysloads, '-', label='system load',
|
|
|
|
color='cyan', alpha=0.8)
|
|
|
|
ax1.plot_date(times, cputimes, '-', label='process time',
|
|
|
|
color='red', alpha=0.8)
|
|
|
|
ax2 = ax1.twinx()
|
|
|
|
ax2.set_ylabel('Available memory (KB)')
|
|
|
|
ax2.plot_date(times, memavails, '-', label='system memory',
|
|
|
|
color='yellow', alpha=0.3)
|
|
|
|
fontP = matplotlib.font_manager.FontProperties()
|
|
|
|
fontP.set_size('x-small')
|
2022-05-06 22:05:04 +03:00
|
|
|
ax1li, ax1la = ax1.get_legend_handles_labels()
|
|
|
|
ax2li, ax2la = ax2.get_legend_handles_labels()
|
|
|
|
ax1.legend(ax1li + ax2li, ax1la + ax2la, loc='best', prop=fontP)
|
2020-09-17 04:29:58 +03:00
|
|
|
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
|
|
|
|
ax1.grid(True)
|
|
|
|
return fig
|
|
|
|
|
2019-06-19 21:12:56 +03:00
|
|
|
def plot_frequency(data, mcu):
|
2017-12-29 23:27:51 +03:00
|
|
|
all_keys = {}
|
|
|
|
for d in data:
|
|
|
|
all_keys.update(d)
|
2018-02-20 07:12:14 +03:00
|
|
|
one_mcu = mcu is not None
|
|
|
|
graph_keys = { key: ([], []) for key in all_keys
|
|
|
|
if (key in ("freq", "adj") or (not one_mcu and (
|
|
|
|
key.endswith(":freq") or key.endswith(":adj")))) }
|
2017-12-29 23:27:51 +03:00
|
|
|
for d in data:
|
|
|
|
st = datetime.datetime.utcfromtimestamp(d['#sampletime'])
|
|
|
|
for key, (times, values) in graph_keys.items():
|
|
|
|
val = d.get(key)
|
|
|
|
if val not in (None, '0', '1'):
|
|
|
|
times.append(st)
|
|
|
|
values.append(float(val))
|
|
|
|
|
|
|
|
# Build plot
|
|
|
|
fig, ax1 = matplotlib.pyplot.subplots()
|
2018-02-20 07:12:14 +03:00
|
|
|
if one_mcu:
|
|
|
|
ax1.set_title("MCU '%s' frequency" % (mcu,))
|
|
|
|
else:
|
|
|
|
ax1.set_title("MCU frequency")
|
2017-12-29 23:27:51 +03:00
|
|
|
ax1.set_xlabel('Time')
|
|
|
|
ax1.set_ylabel('Frequency')
|
|
|
|
for key in sorted(graph_keys):
|
|
|
|
times, values = graph_keys[key]
|
|
|
|
ax1.plot_date(times, values, '.', label=key)
|
|
|
|
fontP = matplotlib.font_manager.FontProperties()
|
|
|
|
fontP.set_size('x-small')
|
|
|
|
ax1.legend(loc='best', prop=fontP)
|
|
|
|
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
|
|
|
|
ax1.yaxis.set_major_formatter(matplotlib.ticker.FormatStrFormatter('%d'))
|
|
|
|
ax1.grid(True)
|
2019-06-19 21:12:56 +03:00
|
|
|
return fig
|
2017-12-29 23:27:51 +03:00
|
|
|
|
2021-04-29 22:53:28 +03:00
|
|
|
def plot_temperature(data, heaters):
|
2019-01-14 06:00:08 +03:00
|
|
|
fig, ax1 = matplotlib.pyplot.subplots()
|
2021-04-29 22:53:28 +03:00
|
|
|
ax2 = ax1.twinx()
|
|
|
|
for heater in heaters.split(','):
|
|
|
|
heater = heater.strip()
|
|
|
|
temp_key = heater + ':' + 'temp'
|
|
|
|
target_key = heater + ':' + 'target'
|
|
|
|
pwm_key = heater + ':' + 'pwm'
|
|
|
|
times = []
|
|
|
|
temps = []
|
|
|
|
targets = []
|
|
|
|
pwm = []
|
|
|
|
for d in data:
|
|
|
|
temp = d.get(temp_key)
|
|
|
|
if temp is None:
|
|
|
|
continue
|
|
|
|
times.append(datetime.datetime.utcfromtimestamp(d['#sampletime']))
|
|
|
|
temps.append(float(temp))
|
|
|
|
pwm.append(float(d.get(pwm_key, 0.)))
|
|
|
|
targets.append(float(d.get(target_key, 0.)))
|
|
|
|
ax1.plot_date(times, temps, '-', label='%s temp' % (heater,), alpha=0.8)
|
|
|
|
if any(targets):
|
|
|
|
label = '%s target' % (heater,)
|
|
|
|
ax1.plot_date(times, targets, '-', label=label, alpha=0.3)
|
|
|
|
if any(pwm):
|
|
|
|
label = '%s pwm' % (heater,)
|
|
|
|
ax2.plot_date(times, pwm, '-', label=label, alpha=0.2)
|
|
|
|
# Build plot
|
|
|
|
ax1.set_title("Temperature of %s" % (heaters,))
|
2019-01-14 06:00:08 +03:00
|
|
|
ax1.set_xlabel('Time')
|
|
|
|
ax1.set_ylabel('Temperature')
|
|
|
|
ax2.set_ylabel('pwm')
|
|
|
|
fontP = matplotlib.font_manager.FontProperties()
|
|
|
|
fontP.set_size('x-small')
|
2022-05-06 22:05:04 +03:00
|
|
|
ax1li, ax1la = ax1.get_legend_handles_labels()
|
|
|
|
ax2li, ax2la = ax2.get_legend_handles_labels()
|
|
|
|
ax1.legend(ax1li + ax2li, ax1la + ax2la, loc='best', prop=fontP)
|
2019-01-14 06:00:08 +03:00
|
|
|
ax1.xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%H:%M'))
|
|
|
|
ax1.grid(True)
|
2019-06-19 21:12:56 +03:00
|
|
|
return fig
|
2019-01-14 06:00:08 +03:00
|
|
|
|
2016-10-31 18:03:52 +03:00
|
|
|
def main():
|
2019-06-19 21:12:56 +03:00
|
|
|
# Parse command-line arguments
|
|
|
|
usage = "%prog [options] <logfile>"
|
2016-10-31 18:03:52 +03:00
|
|
|
opts = optparse.OptionParser(usage)
|
2017-12-29 23:27:51 +03:00
|
|
|
opts.add_option("-f", "--frequency", action="store_true",
|
|
|
|
help="graph mcu frequency")
|
2020-09-17 04:29:58 +03:00
|
|
|
opts.add_option("-s", "--system", action="store_true",
|
|
|
|
help="graph system load")
|
2019-06-19 21:12:56 +03:00
|
|
|
opts.add_option("-o", "--output", type="string", dest="output",
|
|
|
|
default=None, help="filename of output graph")
|
2019-01-14 06:00:08 +03:00
|
|
|
opts.add_option("-t", "--temperature", type="string", dest="heater",
|
|
|
|
default=None, help="graph heater temperature")
|
2018-02-20 07:12:14 +03:00
|
|
|
opts.add_option("-m", "--mcu", type="string", dest="mcu", default=None,
|
|
|
|
help="limit stats to the given mcu")
|
2016-10-31 18:03:52 +03:00
|
|
|
options, args = opts.parse_args()
|
2019-06-19 21:12:56 +03:00
|
|
|
if len(args) != 1:
|
2016-10-31 18:03:52 +03:00
|
|
|
opts.error("Incorrect number of arguments")
|
2019-06-19 21:12:56 +03:00
|
|
|
logname = args[0]
|
|
|
|
|
|
|
|
# Parse data
|
2018-02-20 07:12:14 +03:00
|
|
|
data = parse_log(logname, options.mcu)
|
2016-10-31 18:03:52 +03:00
|
|
|
if not data:
|
|
|
|
return
|
2019-06-19 21:12:56 +03:00
|
|
|
|
|
|
|
# Draw graph
|
|
|
|
setup_matplotlib(options.output is not None)
|
2019-01-14 06:00:08 +03:00
|
|
|
if options.heater is not None:
|
2019-06-19 21:12:56 +03:00
|
|
|
fig = plot_temperature(data, options.heater)
|
|
|
|
elif options.frequency:
|
|
|
|
fig = plot_frequency(data, options.mcu)
|
2020-09-17 04:29:58 +03:00
|
|
|
elif options.system:
|
|
|
|
fig = plot_system(data)
|
2019-06-19 21:12:56 +03:00
|
|
|
else:
|
|
|
|
fig = plot_mcu(data, MAXBANDWIDTH)
|
|
|
|
|
|
|
|
# Show graph
|
|
|
|
if options.output is None:
|
|
|
|
matplotlib.pyplot.show()
|
|
|
|
else:
|
|
|
|
fig.set_size_inches(8, 6)
|
|
|
|
fig.savefig(options.output)
|
2016-10-31 18:03:52 +03:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|