167 lines
6.4 KiB
Python
167 lines
6.4 KiB
Python
|
#!/usr/bin/env python2
|
||
|
# Shaper auto-calibration script
|
||
|
#
|
||
|
# Copyright (C) 2020 Dmitry Butyugin <dmbutyugin@google.com>
|
||
|
# Copyright (C) 2020 Kevin O'Connor <kevin@koconnor.net>
|
||
|
#
|
||
|
# This file may be distributed under the terms of the GNU GPLv3 license.
|
||
|
from __future__ import print_function
|
||
|
import optparse, os, sys
|
||
|
import numpy as np, matplotlib
|
||
|
sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)),
|
||
|
'..', 'klippy', 'extras'))
|
||
|
from shaper_calibrate import CalibrationData, ShaperCalibrate
|
||
|
|
||
|
def parse_log(logname):
|
||
|
with open(logname) as f:
|
||
|
for header in f:
|
||
|
if not header.startswith('#'):
|
||
|
break
|
||
|
if not header.startswith('freq,psd_x,psd_y,psd_z,psd_xyz'):
|
||
|
# Raw accelerometer data
|
||
|
return np.loadtxt(logname, comments='#', delimiter=',')
|
||
|
# Parse power spectral density data
|
||
|
data = np.loadtxt(logname, skiprows=1, comments='#', delimiter=',')
|
||
|
calibration_data = CalibrationData(
|
||
|
freq_bins=data[:,0], psd_sum=data[:,4],
|
||
|
psd_x=data[:,1], psd_y=data[:,2], psd_z=data[:,3])
|
||
|
calibration_data.set_numpy(np)
|
||
|
# If input shapers are present in the CSV file, the frequency
|
||
|
# response is already normalized to input frequencies
|
||
|
if 'mzv' not in header:
|
||
|
calibration_data.normalize_to_frequencies()
|
||
|
return calibration_data
|
||
|
|
||
|
######################################################################
|
||
|
# Shaper calibration
|
||
|
######################################################################
|
||
|
|
||
|
# Find the best shaper parameters
|
||
|
def calibrate_shaper(datas, csv_output):
|
||
|
helper = ShaperCalibrate(printer=None)
|
||
|
if isinstance(datas[0], CalibrationData):
|
||
|
calibration_data = datas[0]
|
||
|
for data in datas[1:]:
|
||
|
calibration_data.join(data)
|
||
|
else:
|
||
|
# Process accelerometer data
|
||
|
calibration_data = helper.process_accelerometer_data(datas[0])
|
||
|
for data in datas[1:]:
|
||
|
calibration_data.join(helper.process_accelerometer_data(data))
|
||
|
calibration_data.normalize_to_frequencies()
|
||
|
shaper_name, shaper_freq, shapers_vals = helper.find_best_shaper(
|
||
|
calibration_data, print)
|
||
|
print("Recommended shaper is %s @ %.1f Hz" % (shaper_name, shaper_freq))
|
||
|
if csv_output is not None:
|
||
|
helper.save_calibration_data(
|
||
|
csv_output, calibration_data, shapers_vals)
|
||
|
return shaper_name, shapers_vals, calibration_data
|
||
|
|
||
|
######################################################################
|
||
|
# Plot frequency response and suggested input shapers
|
||
|
######################################################################
|
||
|
|
||
|
def plot_freq_response(calibration_data, shapers_vals,
|
||
|
selected_shaper, max_freq):
|
||
|
freqs = calibration_data.freq_bins
|
||
|
psd = calibration_data.psd_sum[freqs <= max_freq]
|
||
|
px = calibration_data.psd_x[freqs <= max_freq]
|
||
|
py = calibration_data.psd_y[freqs <= max_freq]
|
||
|
pz = calibration_data.psd_z[freqs <= max_freq]
|
||
|
freqs = freqs[freqs <= max_freq]
|
||
|
|
||
|
fontP = matplotlib.font_manager.FontProperties()
|
||
|
fontP.set_size('x-small')
|
||
|
|
||
|
fig, ax = matplotlib.pyplot.subplots()
|
||
|
ax.set_xlabel('Frequency, Hz')
|
||
|
ax.set_xlim([0, max_freq])
|
||
|
ax.set_ylabel('Power spectral density')
|
||
|
|
||
|
ax.plot(freqs, psd, label='X+Y+Z', color='purple')
|
||
|
ax.plot(freqs, px, label='X', color='red')
|
||
|
ax.plot(freqs, py, label='Y', color='green')
|
||
|
ax.plot(freqs, pz, label='Z', color='blue')
|
||
|
|
||
|
if shapers_vals:
|
||
|
ax.set_title("Frequency response and shapers")
|
||
|
else:
|
||
|
ax.set_title("Frequency response")
|
||
|
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
||
|
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
||
|
ax.xaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
||
|
ax.yaxis.set_minor_locator(matplotlib.ticker.AutoMinorLocator())
|
||
|
ax.ticklabel_format(axis='y', style='scientific', scilimits=(0,0))
|
||
|
ax.grid(which='major', color='grey')
|
||
|
ax.grid(which='minor', color='lightgrey')
|
||
|
ax.legend(loc='upper right', prop=fontP)
|
||
|
|
||
|
if shapers_vals:
|
||
|
ax2 = ax.twinx()
|
||
|
ax2.set_ylabel('Shaper vibration reduction (ratio)')
|
||
|
best_shaper_vals = None
|
||
|
for name, freq, vals in shapers_vals:
|
||
|
label = "%s (%.1f Hz)" % (name.upper(), freq)
|
||
|
linestyle = 'dotted'
|
||
|
if name == selected_shaper:
|
||
|
label += ' (selected)'
|
||
|
linestyle = 'dashdot'
|
||
|
best_shaper_vals = vals
|
||
|
ax2.plot(freqs, vals, label=label, linestyle=linestyle)
|
||
|
ax.plot(freqs, psd * best_shaper_vals,
|
||
|
label='After\nshaper', color='cyan')
|
||
|
ax2.legend(loc='upper left', prop=fontP)
|
||
|
|
||
|
fig.tight_layout()
|
||
|
return fig
|
||
|
|
||
|
######################################################################
|
||
|
# Startup
|
||
|
######################################################################
|
||
|
|
||
|
def setup_matplotlib(output_to_file):
|
||
|
global matplotlib
|
||
|
if output_to_file:
|
||
|
matplotlib.rcParams.update({'figure.autolayout': True})
|
||
|
matplotlib.use('Agg')
|
||
|
import matplotlib.pyplot, matplotlib.dates, matplotlib.font_manager
|
||
|
import matplotlib.ticker
|
||
|
|
||
|
def main():
|
||
|
# Parse command-line arguments
|
||
|
usage = "%prog [options] <logs>"
|
||
|
opts = optparse.OptionParser(usage)
|
||
|
opts.add_option("-o", "--output", type="string", dest="output",
|
||
|
default=None, help="filename of output graph")
|
||
|
opts.add_option("-c", "--csv", type="string", dest="csv",
|
||
|
default=None, help="filename of output csv file")
|
||
|
opts.add_option("-f", "--max_freq", type="float", default=200.,
|
||
|
help="maximum frequency to graph")
|
||
|
options, args = opts.parse_args()
|
||
|
if len(args) < 1:
|
||
|
opts.error("Incorrect number of arguments")
|
||
|
|
||
|
# Parse data
|
||
|
datas = [parse_log(fn) for fn in args]
|
||
|
|
||
|
# Calibrate shaper and generate outputs
|
||
|
selected_shaper, shapers_vals, calibration_data = calibrate_shaper(
|
||
|
datas, options.csv)
|
||
|
|
||
|
if not options.csv or options.output:
|
||
|
# Draw graph
|
||
|
setup_matplotlib(options.output is not None)
|
||
|
|
||
|
fig = plot_freq_response(calibration_data, shapers_vals,
|
||
|
selected_shaper, options.max_freq)
|
||
|
|
||
|
# Show graph
|
||
|
if options.output is None:
|
||
|
matplotlib.pyplot.show()
|
||
|
else:
|
||
|
fig.set_size_inches(8, 6)
|
||
|
fig.savefig(options.output)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|